Vol. 52
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-06-06
Novel Absorbers Based on Wideband Antenna Array for RCS Reduction
By
Progress In Electromagnetics Research B, Vol. 52, 237-251, 2013
Abstract
This study presents a novel wideband absorber for radar cross section (RCS) reduction. Unlike previous absorber designs that use multilayer lossy materials, this study proposes a design based on a planar antenna array that adopts a bowtie dipole structure as the unit cell. The complete design procedure was investigated by using examples for single- and dual-polarized incident wave designs. The measurement results show that the bandwidth of both designs exceeded 81% of 10 dB RCS reduction when the thickness is less than 12% of the free space wavelength at the lowest operating frequency. The high RCS reduction of the proposed absorbers was demonstrated using commercial ground-penetrating radar. Results show that the proposed absorber is invisible to radar.
Citation
Fang-Yao Kuo, Pai-Shiuan Wang, Cheng-Yuan Chin, and Ruey-Bing Hwang, "Novel Absorbers Based on Wideband Antenna Array for RCS Reduction," Progress In Electromagnetics Research B, Vol. 52, 237-251, 2013.
doi:10.2528/PIERB13031806
References

1. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306

2. Zhang, Y., R. Mittra, and B. Wang, "Novel design for low-RCS screens using a combination of dual-AMC," IEEE Antennas and Propagation Society International Symposium (APSURSI' 09), 1-4, 2009.
doi:10.1155/2009/830931

3. Zhang, , Y., R. Mittra, B. Z. Wang, and N. T. Huang, "AMCs for ultra-thin and broadband RAM design," Electronics Letters, Vol. 45, No. 10, 484-485, 2009.
doi:10.1049/el.2009.3161

4. Tsai, Y. and R. Hwang, "RCS reduction of a composite AMC structure," IEEE International Workshop on Electromagnetics Applications and Student Innovation (iWEM 2011), 210-213, 2011.

5. Knott, E., J. Shaeffer, and M. Tuley, Radar Cross Section, SciTech Publishing, 2004.

6. Salisbury, W. W., "Absorbent body for electromagnetic waves," US Patent No. 2599944, 1952.

7. Landy, N., S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

8. Lee, , J. and S. Lim, "Bandwidth-enhanced and polarisation-sensitive metamaterial absorber using double resonance," Electronics Letters, Vol. 47, No. 1, 8-9, 2011.
doi:10.1049/el.2010.2770

9. Wang, T., Z. Liao, H. Luo, and R. Gong, "Magnetic resonance coupling for extending perfect absorbance bandwidth at microwave frequencies," IEEE International Conference on Ultra-Wideband (ICUWB 2010) , Vol. 2, 1-4, 2010.
doi:10.1109/ICUWB.2010.5614779

10. Abdalla, M. A., "Experimental verification of a triple band thin radar absorber metamaterial for oblique incidence applications," Progress In Electromagnetics Research Letters,, Vol. 39, 63-72, 2013.

11. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research , Vol. 115, 381-397, 2011.

12. Fallahzadeh, S., K. Forooraghi, and Z. Atlasbaf, "Design simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 35, 135-144, 2012.

13. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research , Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

14. Li, M., H. Yang, X. Hou, Y. Tian, and D. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

15. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

16. Seman, F., R. Cahill, and V. Fusco, "Performance enhancement of salisbury screen absorber using a resistively loaded high impedance ground plane ," Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP 2010), 1-5, 2010.

17. Seman, F. and R. Cahill, "Performance enhancement of salisbury screen absorber using resistively loaded spiral FSS," Microwave and Optical Technology Letters, Vol. 53, No. 7, 1538-1541, 2011.
doi:10.1002/mop.26040

18. Seman, F., R. Cahill, V. Fusco, and G. Goussetis, "Design of a salisbury screen absorber using frequency selective surfaces to improve bandwidth and angular stability performance," IET Microwaves, Antennas & Propagation, Vol. 5, No. 2, 149-156, 2011.
doi:10.1049/iet-map.2010.0072

19. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329

20. Pang, Y.-Q., Y.-J. Zhou, and J.Wang, "Equivalent circuit method analysis of the in°uence of frequency selective surface resistance on the frequency response of metamaterial absorbers," Journal of Applied Physics , Vol. 110, No. 2, 023704-1-023704-5, 2011.
doi:10.1063/1.3608169

21. Lee, W., J. Lee, and C. Kim, "Characteristics of an electromagnetic wave absorbing composite structure with a conducting polymer electromagnetic bandgap (EBG) in the X-band," Composites Science and Technology, Vol. 68, No. 12, 2485-2489, 2008.
doi:10.1016/j.compscitech.2008.05.006

22. "CST studio suite 2012,".
doi:http://www.cst.com

23. Hwang, R.-B., Periodic Structures: Mode-matching Approach and Applications in Electromagnetic Engineering, Wiley-IEEE Press Publishing, 2012.
doi:10.1002/9781118188040

24. Rashid, A., Z. Shen, and R. Mittra, "On the optimum design of a single-layer thin wideband radar absorber," IEEE International Symposium on Antennas and Propagation (APSURSI 2011), 2916-2919, 2011.
doi:10.1109/APS.2011.5997138