1. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross-section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306 Google Scholar
2. Zhang, Y., R. Mittra, and B. Wang, "Novel design for low-RCS screens using a combination of dual-AMC," IEEE Antennas and Propagation Society International Symposium (APSURSI' 09), 1-4, 2009.
doi:10.1155/2009/830931 Google Scholar
3. Zhang, , Y., R. Mittra, B. Z. Wang, and N. T. Huang, "AMCs for ultra-thin and broadband RAM design," Electronics Letters, Vol. 45, No. 10, 484-485, 2009.
doi:10.1049/el.2009.3161 Google Scholar
4. Tsai, Y. and R. Hwang, "RCS reduction of a composite AMC structure," IEEE International Workshop on Electromagnetics Applications and Student Innovation (iWEM 2011), 210-213, 2011. Google Scholar
5. Knott, E., J. Shaeffer, and M. Tuley, Radar Cross Section, SciTech Publishing, 2004.
6. Salisbury, W. W., "Absorbent body for electromagnetic waves," US Patent No. 2599944, 1952. Google Scholar
7. Landy, N., S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, "Perfect metamaterial absorber," Physical Review Letters, Vol. 100, No. 20, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402 Google Scholar
8. Lee, , J. and S. Lim, "Bandwidth-enhanced and polarisation-sensitive metamaterial absorber using double resonance," Electronics Letters, Vol. 47, No. 1, 8-9, 2011.
doi:10.1049/el.2010.2770 Google Scholar
9. Wang, T., Z. Liao, H. Luo, and R. Gong, "Magnetic resonance coupling for extending perfect absorbance bandwidth at microwave frequencies," IEEE International Conference on Ultra-Wideband (ICUWB 2010) , Vol. 2, 1-4, 2010.
doi:10.1109/ICUWB.2010.5614779 Google Scholar
10. Abdalla, M. A., "Experimental verification of a triple band thin radar absorber metamaterial for oblique incidence applications," Progress In Electromagnetics Research Letters,, Vol. 39, 63-72, 2013. Google Scholar
11. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research , Vol. 115, 381-397, 2011. Google Scholar
12. Fallahzadeh, S., K. Forooraghi, and Z. Atlasbaf, "Design simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber," Progress In Electromagnetics Research Letters, Vol. 35, 135-144, 2012. Google Scholar
13. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research , Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110 Google Scholar
14. Li, M., H. Yang, X. Hou, Y. Tian, and D. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409 Google Scholar
15. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011. Google Scholar
16. Seman, F., R. Cahill, and V. Fusco, "Performance enhancement of salisbury screen absorber using a resistively loaded high impedance ground plane ," Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP 2010), 1-5, 2010. Google Scholar
17. Seman, F. and R. Cahill, "Performance enhancement of salisbury screen absorber using resistively loaded spiral FSS," Microwave and Optical Technology Letters, Vol. 53, No. 7, 1538-1541, 2011.
doi:10.1002/mop.26040 Google Scholar
18. Seman, F., R. Cahill, V. Fusco, and G. Goussetis, "Design of a salisbury screen absorber using frequency selective surfaces to improve bandwidth and angular stability performance," IET Microwaves, Antennas & Propagation, Vol. 5, No. 2, 149-156, 2011.
doi:10.1049/iet-map.2010.0072 Google Scholar
19. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329 Google Scholar
20. Pang, Y.-Q., Y.-J. Zhou, and J.Wang, "Equivalent circuit method analysis of the in°uence of frequency selective surface resistance on the frequency response of metamaterial absorbers," Journal of Applied Physics , Vol. 110, No. 2, 023704-1-023704-5, 2011.
doi:10.1063/1.3608169 Google Scholar
21. Lee, W., J. Lee, and C. Kim, "Characteristics of an electromagnetic wave absorbing composite structure with a conducting polymer electromagnetic bandgap (EBG) in the X-band," Composites Science and Technology, Vol. 68, No. 12, 2485-2489, 2008.
doi:10.1016/j.compscitech.2008.05.006 Google Scholar
22. "CST studio suite 2012,".
doi:http://www.cst.com Google Scholar
23. Hwang, R.-B., Periodic Structures: Mode-matching Approach and Applications in Electromagnetic Engineering, Wiley-IEEE Press Publishing, 2012.
doi:10.1002/9781118188040
24. Rashid, A., Z. Shen, and R. Mittra, "On the optimum design of a single-layer thin wideband radar absorber," IEEE International Symposium on Antennas and Propagation (APSURSI 2011), 2916-2919, 2011.
doi:10.1109/APS.2011.5997138 Google Scholar