1. Baraniuk, R. and P. Steeghs, "Compressive radar imaging," Proc. Radar Conference, 128-133, 2007.
2. Liu, Z., X. Wei, and X. Li, "Adaptive clutter suppression for airborne random pulse repetition interval radar based on compressed sensing," Progress In Electromagnetics Research, Vol. 128, 291-311, 2012.
3. Yang, M. and G. Zhang, "Parameter identifiability of monostatic MIMO chaotic radar using compressed sensing," Progress In Electromagnetics Research B, Vol. 44, 367-382, 2012.
4. Liu, J., X. Li, S. Xu, and Z. Zhuang, "ISAR imaging of non-uniform rotation targets with limited pulses via compressed sensing," Progress In Electromagnetics Research B, Vol. 41, 285-305, 2012.
5. Wei, S. J., X.-L. Zhang, J. Shi, and K. F. Liao, "Sparse array microwave 3-D imaging: Compressed sensing recovery and experimental study," Progress In Electromagnetics Research, Vol. 135, 161-181, 2013.
6. Li, J., S. Zhang, and J. Chang, "Applications of compressed sensing for multiple transmitters multiple azimuth beams SAR imaging," Progress In Electromagnetics Research, Vol. 127, 259-275, 2012.
7. Chen, J., J. Gao, Y. Zhu, W. Yang, and P. Wang, "A novel imag formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 527-543, 2012.
8. Wei, S. J., X.-L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.
9. Wei, S. J., X.-L. Zhang, J. Shi, and G. Xiang, "Sparse reconstruction for SAR imaging based on compressed sensing," Progress In Electromagnetics Research, Vol. 109, 63-81, 2010.
10. Gong, Q. and Z.-D. Zhu, "Study stap algorithm on interference target detect under nonhomogenous environment," Progress In Electromagnetics Research, Vol. 99, 211-224, 2009.
11. Tounsi, M. L., R. Touhami, A. Khodja, and M. C. E. Yagoub, "Analysis of the mixed coupling in bilateral microwave circuits including anisotropy for MICS and MMICS applications," Progress In Electromagnetics Research, Vol. 62, 281-315, 2006.
12. Asadi, S. and M. C. E. Yagoub, "Effcient time-domain noise modeling approach for millimeter-wave fets," Progress In Electromagnetics Research, Vol. 107, 129-146, 2010.
13. Habib, M. A., A. Bostani, A. Djaiz, M. Nedil, M. C. E. Yagoub and T. A. Denidni, "Ultra wideband CPW-FED aperture antennawith WLAN band rejection," Progress In Electromagnetics Research, Vol. 106, 17-31, 2010.
14. Guerci, J., Space-time Adaptive Processing for Radar, Artech House, 2003.
15. Klemm, R., "Applications of space-time adaptive processing," Inspec/IEE, 2004.
16. Melvin, W., "A STAP overview ," IEEE Aerospace and Electronic Systems Magazine, Vol. 19, No. 1, 19-35, 2004.
17. Zhang, H., G. Li, and H. Meng, "A class of novel STAP algorithms using sparse recovery technique," Information Theory, 2009.
18. Selesnick, I. W., S. U. Pillai, K. Y. Li, and B. Himed, "Angle-Doppler processing using sparse regularization," Proc. IEEE International Conference on Acoustics, Speech and Signal Processing, 2750-2753, 2010.
19. Parker, J. and L. Potter, "A Bayesian perspective on sparse regularization for STAP post-processing," IEEE Radar Conference, 1471-1475, 2010.
20. Sun, K., H. Meng, and Y.Wang, "Direct data domain STAP using sparse representation of clutter spectrum," Signal Processing, Vol. 91, No. 9, 2222-2236, 2011.
21. Donoho, D. L. and M. Elad, "Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization," Proc. Nat. Acad. Sci., Vol. 100, No. 5, 2197-2202, 2003.
22. Gribonval, R. and M. Nielsen, "Sparse representations in unions of bases," IEEE Trans. on Information Theory, Vol. 49, No. 12, 3320-3325, 2003.
23. Tropp, J. A., "Greed is good: Algorithmic results for sparse approximation," IEEE Trans. on Information Theory, Vol. 50, No. 10, 2231-2224, 2004.
24. Donoho, D., "Compressed sensing ," IEEE Trans. on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
25. Ben-Haim, Z., Y. C. Eldar, and M. Elad, "Coherence-based performance guarantees for estimating a sparse vector under random noise," IEEE Trans. on Signal Processing, Vol. 58, No. 10, 5030-5043, 2010.
26. Duarte, M. F. and Y. C. Eldar, "Structured compressed sensing: From theory to applications," IEEE Trans. on Signal Processing, Vol. 59, No. 9, 4053-4085, 2011.
27. Dai, W. and O. Milenkovic, "Subspace pursuit for compressive sensing signal reconstruction," IEEE Trans. on Information Theory, Vol. 55, No. 5, 2230-2249, 2009.
28. Stojanovic, I., W. Karl, and M. Cetin, "Compressed sensing of mono-static and multi-static SAR, SPIE defense and security symposium," Algorithms for Synthetic Aperture Radar Imagery XVI, 2009.
29. Joachim , H. G. E., "On compressive sensing applied to radar," Signal Processing, Vol. 90, No. 5, 1402-1414, 2010.
30. Donoho, D. L., M. Elad, and V. N. Temlyakov, "Stable recovery of sparse overcomplete representations in the presence of noise," IEEE Trans. on Information Theory, Vol. 52, No. 1, 6-18, 2006.
31. Elad, M., "Optimized projections for compressed sensing," IEEE Trans. on Signal Processing, Vol. 55, No. 12, 5695-5702, 2007.
32. "SparseLab,".
doi:http://dsp.rice.edu/cs
33. Himed, B., Y. Zhang, and A. Hajjari, ",STAP with angle-Doppler compensation for bistatic airborne radars," Proc. of IEEE National Radar Conference, 22-25, 2002.
34. Klemm, R., Principles of Space-time Adaptive Processing, IEE Press, 1999.