1. Cusack, M. A., P. R. Briddon, and M. Jaros, "Absorption spectra and optical transitions in InAs/GaAs self-assembled quantum dots," Phys. Rev. B, 4047-4050, 1997.
doi:10.1103/PhysRevB.56.4047 Google Scholar
2. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Electronic properties of self-assembled quantum dots of sodium on Cu(1 1 1) and their interaction with water," Surf. Sci., Vol. 601, 2656-2659, 2007.
doi:10.1016/j.susc.2006.11.079 Google Scholar
3. Politano, A., A. R. Marino, V. Formoso, D. Farias, R. Miranda, and G. Chiarello, "Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111)," Phys. Rev. B, Vol. 84, 033401, 2011.
doi:10.1103/PhysRevB.84.033401 Google Scholar
4. Borca, B., S. Barja, M. Garnica, M. Minniti, A. Politano, J. M. Rodriguez-Garcia, J. J. Hinarejos, D. Farias, A. L. Vazquez de Parga, and , "Electronic and geometric corrugation of periodically rippled, self-nanostructured graphene epitaxially grown on Ru(0001)," New J. Phys., Vol. 12, 093018, 2010.
doi:10.1088/1367-2630/12/9/093018 Google Scholar
5. Ariga, K., A. Vinu, Y. Yamauchi, Q. Ji, and J. P. Hill, "Nanoarchitectonics for mesoporous materials," Bull. Chem. Soc. Jpn., Vol. 85, 1-32, 2012.
doi:10.1246/bcsj.20110162 Google Scholar
6. Xuan, W., C. Zhu, Y. Liu, and Y. Cui, "Mesoporous metal-organic framework materials," Chem. Soc. Rev., Vol. 41, 1677-1695, 2012.
doi:10.1039/c1cs15196g Google Scholar
7. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.
doi:10.1103/PhysRevLett.58.2486 Google Scholar
8. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.
doi:10.1103/PhysRevLett.58.2059 Google Scholar
9. Joannopoulus, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Moding The Flow of Light, Princeton University Press, 1995.
10. Sakoda, K., Optical Properties of Photonic Crystals, Spinger, 2001.
doi:10.1007/978-3-662-14324-7
11. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, 2004.
doi:10.1126/science.1096796 Google Scholar
12. Liu, Y. and X. Zhang, "Metamaterials: A new frontier of science and technology," Chem. Soc. Rev., Vol. 40, 2494-2507, 2011.
doi:10.1039/c0cs00184h Google Scholar
13. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B , Vol. 58, R10096-R10099, 1998.
doi:10.1103/PhysRevB.58.R10096 Google Scholar
14. Meier, M., A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett., Vol. 74, 7-9, 1999.
doi:10.1063/1.123116 Google Scholar
15. Politano, A., "Influence of structural and electronic properties on the collective excitations of Ag/Cu(111)," Plasmonics, Vol. 7, 131-136, 2012.
doi:10.1007/s11468-011-9285-5 Google Scholar
16. Deubel, M., G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater., Vol. 3, 444-447, 2004.
doi:10.1038/nmat1155 Google Scholar
17. Chan, C. T., Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B, Vol. 51, 16635, 1995.
doi:10.1103/PhysRevB.51.16635 Google Scholar
18. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Inc., 2005.
19. Pendry, J. B., "Photonic band structures," J. Mod. Opt., , Vol. 41, 209-229, 1994.
doi:10.1080/09500349414550281 Google Scholar
20. Stefanou, N., V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: Frequency bands and transmission coeffcients," Comp. Phys. Comm., Vol. 113, 49-77, 1998.
doi:10.1016/S0010-4655(98)00060-5 Google Scholar
21. Li, Z. Y. and L. L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E, Vol. 67, 046607, 2003.
doi:10.1103/PhysRevE.67.046607 Google Scholar
22. Deinega, A., S. Belousov, and I. Valuev, "Hybrid transfer-matrix FDTD method for layered periodic structures," Opt. Lett., Vol. 34, 860-862, 2009.
doi:10.1364/OL.34.000860 Google Scholar
23. Hsue, Y.-C. and T.-J. Yang, "Applying a modified plane-wave expansion method to the calculations of transmissivity and reflectivity of a semi-infinite photonic crystal," Phys. Rev. E, Vol. 70, 016706, 2004.
doi:10.1103/PhysRevE.70.016706 Google Scholar
24. Shi, S., C. Chen, and D. W. Prather, "Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs," Appl. Phys. Lett., Vol. 86, 043104, 2005.
doi:10.1063/1.1855425 Google Scholar
25. Gu, B.-Y., L.-M. Zhao, and Y.-C. Hsue, "Applications of the expanded basis method to study the properties of photonic crystals with frequency-dependent dielectric functions and dielectric losses," Physics Letters A, Vol. 355, 134-141, 2006.
doi:10.1016/j.physleta.2006.02.011 Google Scholar
26. Yuan, J. and Y. Y. Lu, "Photonic bandgap calculations with Dirichlet-to-Neumann maps," J. Opt. Soc. Am. A, Vol. 23, 3217-3222, 2006.
doi:10.1364/JOSAA.23.003217 Google Scholar
27. Yuan, J., Y. Y. Lu, and X. Antoine, "Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps," J. Comp. Phys., Vol. 227, 4617-4629, 2008.
doi:10.1016/j.jcp.2008.01.014 Google Scholar
28. Ho, K.-M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, 3152-3155, 1990.
doi:10.1103/PhysRevLett.65.3152 Google Scholar
29. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Exp., Vol. 8, 173-190, 2001.
doi:10.1364/OE.8.000173 Google Scholar
30. Notomi, M., "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B, Vol. 62, 10696-10705, 2000.
doi:10.1103/PhysRevB.62.10696 Google Scholar
31. Foteinopoulou, S. and C. M. Soukoulis, "Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects," Phys. Rev. B, Vol. 72, 165112, 2005.
doi:10.1103/PhysRevB.72.165112 Google Scholar
32. Jiang, W., R. T. Chen, and X. Lu, "Theory of light refraction at the surface of a photonic crystal," Phys. Rev. B, Vol. 71, 245115, 2005.
doi:10.1103/PhysRevB.71.245115 Google Scholar
33. Santamara, , F. G., J. F. G. Lopez, P. V. Braun, and C. Lopez, "Optical diffraction and high-energy features in three-dimensional photonic crystals," Phys. Rev. B, Vol. 71, 195112, 2005.
doi:10.1103/PhysRevB.71.195112 Google Scholar
34. Serebryannikov, A. E., T. Magath, and K. Schuenemann, "Bragg transmittance of s-polarized waves through finite-thickness photonic crystals with a periodically corrugated interface," Phys. Rev. E, Vol. 74, 066607, 2006.
doi:10.1103/PhysRevE.74.066607 Google Scholar
35. Li, Z. Y., L. L. Lin, and Z. Q. Zhang, "Spontaneous emission from photonic crystals: Full vectorial calculations," Phys. Rev. Lett., Vol. 84, 4341-4344, 2000.
doi:10.1103/PhysRevLett.84.4341 Google Scholar
36. Zhou, Y. S., X. H. Wang, B. Y. Gu, and F. H. Wang, "Photonic band gap effects on spontaneous emission lifetimes of an assembly of atoms in two-dimensional photonic crystals," Phys. Rev. E, Vol. 72, 017601, 2005.
doi:10.1103/PhysRevE.72.017601 Google Scholar
37. Kuzmiak, V., A. A. Maradudin, and F. Pincemin, "Photonic band structures of two-dimensional systems containing metallic components," Phys. Rev. B, Vol. 50, 16835-16844, 1994.
doi:10.1103/PhysRevB.50.16835 Google Scholar
38. Kuzmiak, V. and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B, Vol. 55, 7427-7444, 1997.
doi:10.1103/PhysRevB.55.7427 Google Scholar
39. Kuzmiak, V., A. A. Maradudin, and A. R. McGurn, "Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal," Phys. Rev. B, Vol. 55, 4298-4311, 1997.
doi:10.1103/PhysRevB.55.4298 Google Scholar
40. Zhang, W., A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B, Vol. 54, 10280-10283, 1996.
doi:10.1103/PhysRevB.54.10280 Google Scholar
41. Lee, W. M., P. M. Hui, and D. Stroud, "Propagating photonic modes below the gap in a superconducting composite," Phys. Rev. B, Vol. 51, 8634-8637, 1995.
doi:10.1103/PhysRevB.51.8634 Google Scholar
42. Raman, A. and S. Fan, "Photonic band structure of dispersive metamaterials formulated as a hermitian eigenvalue problem," Phys. Rev. Lett., Vol. 104, 087401, 2010.
doi:10.1103/PhysRevLett.104.087401 Google Scholar
43. Toader, O. and S. John, "Photonic band gap enhancement in frequency-dependent dielectrics," Phys. Rev. E, Vol. 70, 046605, 2004.
doi:10.1103/PhysRevE.70.046605 Google Scholar
44. Inui, T., Y. Tanabe, and Y. Onodera, Group Theory and Its Application in Physics,, Springer, 1996.
45. Alagappan, G., X. W. Sun, and H. D. Sun, "Symmetries of the eigenstates in an anisotropic photonic crystal," Phys. Rev. B , Vol. 77, 195117, 2008.
doi:10.1103/PhysRevB.77.195117 Google Scholar
46. Lopez-Tejeira, F., T. Ochiai, K. Sakoda, and J. Sanchez-Dehesa, "Symmetry characterization of eigenstates in opal-based photonic crystals ," Phys. Rev. B, Vol. 65, 195110, 2002.
doi:10.1103/PhysRevB.65.195110 Google Scholar
47. Sakoda, K., N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, "Photonic bands of metallic systems. I. Principle of calculation and accuracy ," Phys. Rev. B, Vol. 64, 045116, 2001.
doi:10.1103/PhysRevB.64.045116 Google Scholar
48. Gohberg, I., P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, 1982.
49. Yariv, A., "Introduction to Theory and Applications Mechanics," John Wiley & Sons Inc., 1982. Google Scholar
50. Kittel, C., Introduction to Solid State Physics, 7th Ed., Wiley, 1995.
51. Halevi, P. and F. Ramos-Mendieta, "Tunable photonic crystals with semiconducting constituents," Phys. Rev. Lett., Vol. 85, 1875, 2000.
doi:10.1103/PhysRevLett.85.1875 Google Scholar
52. Weber, M. J., Handbook of Optical Materials, CRC Press, 2002.
doi:10.1201/9781420050196
53. Deinega, A. and S. John, "Effective optical response of silicon to sunlight in the finite-difference time-domain method," Opt. Lett., Vol. 37, 112-114, 2012..
doi:10.1364/OL.37.000112 Google Scholar
54. Ribbing, C. G., H. HogstrÄom, and A. Rung, "Studies of polaritonic gaps in photonic crystals," Appl. Opt., Vol. 45, 1575-1582, 2006.
doi:10.1364/AO.45.001575 Google Scholar
55. Foteinopoulou, S., M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials," Phys. Rev. B, Vol. 84, 035128, 2011.
doi:10.1103/PhysRevB.84.035128 Google Scholar