Vol. 54
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-09-06
Physics-Based Expansion on 3D Conformal Gaussian Beams for the Scattering from a Curved Interface
By
Progress In Electromagnetics Research B, Vol. 54, 245-264, 2013
Abstract
Gaussian beams techniques are high-frequency asymptotic methods that can be used to model the propagation/interaction of fields in a variety of problems. In this article, an expansion is proposed to express the scattering of magnetic/electric currents from a curved interface in terms of a new kind of elementary beams, the conformal Gaussian beams. The expansion characteristics rely on the physical properties of the configuration, which leads to represent the scattering with a small number of conformal Gaussian beams. An analytical formulation for the conformal Gaussian beams is developed, which expression is derived from an asymptotic evaluation of the radiation integrals valid at great distance from the interface. An example is presented to show that this analytical formulation is in good agreement with the reference result. Numerical tests are led on the expansion in order to show that the scattering can be represented with accuracy by adding the contribution of conformal Gaussian beams.
Citation
Alexandre Chabory, Jérôme Sokoloff, and Sylvain Bolioli, "Physics-Based Expansion on 3D Conformal Gaussian Beams for the Scattering from a Curved Interface," Progress In Electromagnetics Research B, Vol. 54, 245-264, 2013.
doi:10.2528/PIERB13071101
References

1. Kogelnick, H. and T. Li, "Laser beams and resonators," Proceedings of the IEEE, Vol. 54, No. 10, 1312-1329, 1966.
doi:10.1109/PROC.1966.5119

2. Sokoloff, J., S. Bolioli, and P. F. Combes, "Gaussian beam expansion for radiation analysis of metallic reflectors illuminated under oblique incidence ," IEEE Trans. on Mag., Vol. 38, No. 2, 697-700, 2002.
doi:10.1109/20.996181

3. Chou, H. T., P. A. Pathak, and R. J. Burkholder, "Novel Gaussian beam method for the rapid analysis of large reflector antennas," IEEE Trans. on Antennas and Propag., Vol. 49, No. 6, 880-893, 2001.
doi:10.1109/8.931145

4. Pascal, O., F. Lemaitre, and G. Soum, "Dielectric lens analysis using vectorial multimodal Gaussian beam expansion," Ann. Telecom., Vol. 52, No. 9-10, 519-528, 1997.

5. Chabory, A., J. Sokolo®, S. Bolioli, and P. F. Combes, "Computation of electromagnetic scattering by multilayer dielectric objects using Gaussian beam based techniques," C.R. Phys., Vol. 6, 654-662, 2005.
doi:10.1016/j.crhy.2005.06.011

6. Maciel, J. J. and L. B. Felsen, "Gabor-based narrow-waisted Gaussian beam algorithm for transmission of aperture-excited 3D vector fields through arbitrarily shaped 3D dielectric layers," Radio Science, Vol. 37, No. 2, vic6.1-6.9, 2002.
doi:10.1029/2001RS002556

7. Galdi, V., L. B. Felsen, and D. A. Castanon, "Quasi-ray Gaussian beam algorithm for time-harmonic two-dimensional scattering by moderately rough interfaces," IEEE Trans. on Antennas and Propag., Vol. 49, No. 9, 1305-1314, 2001.
doi:10.1109/8.947022

8. Elis, K., A. Chabory, and J. Sokoloff, "3D interaction of Gaussian beams with dichroic surfaces for the modeling of quasi optical systems," International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), 1-5, Toulouse, France, June 2012.

9. Ghannoum, I., C. Letrou, and G. Bauquet, "Frame based Gaussian beam bouncing," URSI International Symposium on Electromagnetic Theory, 68-71, 2010.

10. Bogush, A. J. and R. E. Elkins, "Gaussian field expansions for large aperture antennas," IEEE Trans. on Antennas and Propag., Vol. 34, No. 2, 228-243, 1986.
doi:10.1109/TAP.1986.1143795

11. Einziger, P. D., Y. Haramaty, and L. B. Felsen, "Complex rays for radiation from discretized aperture distributions," IEEE Trans. on Antennas and Propag., Vol. 35, No. 9, 1031-1044, 1987.
doi:10.1109/TAP.1987.1144219

12. Casaletti, M. and S. Maci, "Aperture beam expansion by using a spectral 2D-GPOF method," Progress In Electromagnetics Research M, Vol. 28, 245-257, 2013.

13. Imbriale, W. A. and D. J. Hoppe, "Recent trend in the analysis of quasioptical systems," Millennium Conference on Antennas and Propagation, Davos, Switzerland, 2000.

14. Chabory, A., J. Sokoloff, and S. Bolioli, "Novel Gabor-based Gaussian beam expansion for curved aperture radiation in dimension two," Progress In Electromagnetics Research, Vol. 58, 171-185, 2006.
doi:10.2528/PIER05090702

15. Chabory, A., J. Sokoloff, and S. Bolioli, "Physically based expansion on conformal Gaussian beams for the radiation of curved aperture in dimension 2," IET Microw. Antennas Propag., Vol. 2, No. 2, 152-157, 2008.
doi:10.1049/iet-map:20060168

16. Chabory, A., Modélisation électromagnétique des radômes par des techniques basées sur les faisceaux Gaussiens, Ph.D. Thesis, Université Paul Sabatier, Toulouse, France, 2004.

17. Hillairet, J., J. Sokoloff, and S. Bolioli, "Electromagnetic scattering of a field known on a curved interface using conformal Gaussian beams," Progress In Electromagnetics Research B, Vol. 8, 195-212, 2008.
doi:10.2528/PIERB08062603

18. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Electrical Engineering Series, Prentice Hall, Inc., 1973.

19. Chabory, A., J. Sokoloff, S. Bolioli, and K. Elis, "Application of Gaussian-beam based techniques to the quasi-optical systems of radio frequency radiometers," European Conference on Antennas and Propagation (EUCAP), 1-5, Barcelona, Spain, April 2010.