Vol. 55
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-10-02
A New Imaging Algorithm for Geosynchronous SAR Based on the Fifth-Order Doppler Parameters
By
Progress In Electromagnetics Research B, Vol. 55, 195-215, 2013
Abstract
This paper proposes a new imaging algorithm based on a novel accurate range model to process the data acquired by Geosynchronous-Earth-orbital Synthetic Aperture Radar (Geo-SAR). The new range model, called DRM-5, is obtained from the 1-5th order Doppler parameters of spaceborne SAR. It is employed to describe the slant range of Geo-SAR during the super-long integration time. Furthermore, the two-dimensional frequency spectrum of point targets based on the new range model is derived and analyzed. An advanced Frequency Domain Algorithm (FDA) based on DRM-5 is proposed to process the data of stripmap mode Geo-SAR. The varied Doppler parameters in the cross-azimuth direction are considered in the new imaging algorithm, and the space-varied range-azimuth coupling phase term is compensated through data blocking. A simulation experiment is performed to verify the efficiency and superiority of the new algorithm, and the results show that it has a good effect on an L-band stripmap mode Geo-SAR system with azimuth resolution around 5m and 300km range swath.
Citation
Bingji Zhao, Yunzhong Han, Wenjun Gao, Yunhua Luo, and Xiaolei Han, "A New Imaging Algorithm for Geosynchronous SAR Based on the Fifth-Order Doppler Parameters," Progress In Electromagnetics Research B, Vol. 55, 195-215, 2013.
doi:10.2528/PIERB13072803
References

1. Tomiyasu, K., "Synthetic aperture radar in geosynchronous orbit," Proc. Antennas and Propagation Society International Symposium, USA, May 1978.

2. Tomiyasu, K. and J. L. Pacell, "Synthetic aperture radar imaging from an inclined geosynchronous orbit," IEEE Trans. Geosci. Remote Sens., Vol. 21, No. 3, 324-328, 1983.
doi:10.1109/TGRS.1983.350561

3. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

4. Liu, Q., W. Hong, W. Tan, Y. Lin, Y. Wang, and Y. Wu, "An improved polar format algorithm with performance analysis for geosynchronous circular SAR 2D imaging," Progress In Electromagnetics Research, Vol. 119, 155-170, 2011.
doi:10.2528/PIER11060503

5. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar: System and Signal Processing, 565-591, Wiley, New York, 1991.

6. NASA and JPL, , "Global earthquake satellite system: A 20-year plan to enable earthquake prediction," , JPL Document, 400-1069, March 2003.

7. Wei, S.-J., X.-L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

8. Xu, W., P. Huang, and Y.-K. Deng, "Muti-channel SPCMB-TOPS SAR for high-resolution wide-swath imaging," Progress In Electromagnetics Research, Vol. 116, 533-551, 2011.
doi:10.1109/36.312891

9. Moreira, A. and Y. Huang, "Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 5, 1029-1040, 1994.
doi:10.1109/7.705890

10. Eldhuset, K., "A new fourth-order processing algorithm for spaceborne SAR," IEEE Trans. Aero. Electronic Sys., Vol. 34, No. 3, 824-835, 1998.
doi:10.1109/LGRS.2008.2010781

11. Eldhuset, K., "Spaceborne bistatic SAR processing using the EETF4 algorithm," IEEE Geosci. Remote Sens. Lett., Vol. 6, No. 2, 194-198, 2009.
doi:10.1109/LGRS.2006.885862

12. Neo, Y. L., F. Wong, and I. G. Cumming, "A two dimensional spectrum for bistatic SAR processing using series reversion," IEEE Geosci. Remote Sens. Lett., Vol. 4, No. 1, 93-96, 2007.
doi:10.1109/TAES.2006.248188

13. Pillai, S. U., B. Himed, and K. Y. Li, "Effect of Earth's rotation and range foldover on space-based radar performance," IEEE Trans. Aero. Electronic Sys., Vol. 42, No. 3, 917-932, 2006.

14. Zhao, B., X. Qi, D. Yu-Kai, R. Wang, and H. Song, "Accurate fourth-order doppler parameter estimation approach for geosynchronous SAR," Proc. EUSAR 2012, Nurnberg, Germany, 2012.

15. Zhao, B., X. Qi, H. Song, W. Gao, X. Han, and R. P. Chen, "The accurate fourth-order doppler parameter calculation and analysis for geosynchronous SAR," Progress In Electromagnetics Research, Vol. 140, 91-104, 2013.
doi:10.1109/TAES.1982.309269

16. Wu, C., K. Y. Liu, and M. J. Jin, "A modeling and correlation algorithm for spaceborne SAR signals," IEEE Trans. Aero. Electronic Sys., Vol. 18, No. 5, 563-574, 1982.
doi:10.1109/7.481254

17. Davidson, G. W., I. G. Cumming, and M. R. Ito, "A chirp scaling approach for processing squint mode SAR data," IEEE Trans. Aero. Electronic Sys., Vol. 32, No. 1, 121-133, 1996.
doi:10.1109/36.158864

18. Bamler, R., "A comparison of range-Doppler and wavenumber domain SAR focusing algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 30, No. 4, 706-713, 1992.
doi:10.2528/PIER10100307

19. Tan, W., W. Hong, Y. Wang, and Y. Wu, "A novel spherical-wave three-dimensional imaging algorithm for microwave cylindrical scanning geometries," Progress In Electromagnetics Research, Vol. 111, 43-70, 2011.
doi:10.2528/PIER11071501

20. Zhang, M., Y. W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research, Vol. 113, 395-412, 2011.

21. Zhao, B., X. Qi, Y. Deng, R. Wang, H. Song, and Y. Luo, "A new method of improving the accuracy of the hyperbolic range equation," Proc. IGARSS 2012, Munich, Germany, 2012.
doi:10.1109/LGRS.2005.844591

22. Fielder, H., E. Boerner, J. Mittermayer, and G. Krieger, "Total zero Doppler steering: A new method for minimizing the Doppler centroid," IEEE Geosci. Remote Sens. Lett., Vol. 2, No. 2, 141-145, 2005.