1. Sarty, G. E., R. Bennet, and R. W. Cox, Direct reconstruction of non-Cartesian k-space data using a nonuniform fast Fourier transform, Vol. 45, 908-915, Magnetic Resonance in Medicine, 2001.
2. Basu, S. and Y. Bresler, "An O(N2 log2 N) filtered back-projection reconstruction algorithm for tomography," IEEE Trans. on Image Process., Vol. 9, No. 10, 1760-1773, Oct. 2000.
doi:10.1109/83.869187 Google Scholar
3. Boag, A., "A fast multilevel domain decomposition algorithm for radar imaging," IEEE Trans. on Antennas and Propag., Vol. 49, No. 4, 666-671, Apr. 2001.
doi:10.1109/8.923329 Google Scholar
4. Schnattinger, G., C. Schmidt, and T. Eibert, "3-D imaging by hierarchical disaggregation," German Microwave Conference (GeMiC), 1-4, Mar. 2011. Google Scholar
5. Desai, M. D. and W. K. Jenkins, "Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar," IEEE Trans. on Image Process., Vol. 4, No. 4, 505-517, 1992.
doi:10.1109/83.199920 Google Scholar
6. Mensa, D. L., "High Resolution Radar Cross-section Imaging," Artech House Inc., 1990. Google Scholar
7. Majumder, U. K., M. A. Temple, M. J. Minardi, and E. G. Zelnio, "Point spread function characterization of a radially displaced scatterer using circular synthetic aperture radar," IEEE Radar Conference, 729-733, Apr. 2007. Google Scholar
8. Maussang, F., F. Daout, G. Ginolhac, and F. Schmitt, "GPS ISAR passive system characterization using point spread function," New Trends for Environmental Monitoring Using Passive Systems, 1-4, Oct. 2008.
doi:10.1109/PASSIVE.2008.4786989 Google Scholar
9. Tathee, S., Z. J. Koles, and T. R. Overton, "Image restoration in computed tomography: Estimation of the spatially variant point spread function," IEEE Trans. on Med. Imag., Vol. 11, No. 4, 539-545, Dec. 1992.
doi:10.1109/42.192689 Google Scholar
10. Gallatin, G. M., "Analytic evaluation of the intensity point spread function," Journal of Vaccum Science and Technology B, Vol. 18, No. 6, 3023-3028, Nov. 2000.
doi:10.1116/1.1324617 Google Scholar
11. Berizzi, F., E. Mese, M. Diani, and M. Martorella, "High-resolution ISAR imaging of maneuvering targets by means of the range instantaneous Doppler technique: Modeling and performance analysis ," IEEE Trans. on Image Process., Vol. 10, No. 12, 1890-1890, Dec. 2001.
doi:10.1109/83.974573 Google Scholar
12. Buddendick, H. and T. F. Eibert, "Bistatic image formation from shooting and bouncing rays simulated current distributions," Progress In Electromagnetics Research, Vol. 119, 1-18, 2011.
doi:10.2528/PIER11060212 Google Scholar
13. Schnattinger, G. and T. F. Eibert, "Solution to the full vectorial 3D inverse source problem by multi-level fast multipole method inspired hierarchical disaggregation," IEEE Trans. on Antennas and Propag., Vol. 60, No. 7, 3325-3335, Jul. 2012.
doi:10.1109/TAP.2012.2196946 Google Scholar
14. Schnattinger, G., C. H. Schmidt, and T. F. Eibert, "Analysis of 3-D images generated by hierarchical disaggregation," Proc. Int. Radar Symp. (IRS), 365-370, Sep. 2011. Google Scholar
15. Rade, L. and B. Westergren, Mathematics Handbook for Science and Engineering, 5th Ed., Springer, 2004.
doi:10.1007/978-3-662-08549-3_15
16. Rosenthal, A., D. Razansky, and V. Ntziachristos, "Fast semi-analytical model-based acoustic inversion for quantitative optoacoustic tomography," IEEE Trans. on Image Process., Vol. 29, No. 6, 1275-1285, 2010. Google Scholar
17. Balanis, C., "Advanced Engineering Electromagnetics," ser. CourseSmart Series, Wiley, 2012.
doi:http://books.google.de/books?id=cRkTuQAACAAJ Google Scholar
18. Stratton, J. A., Electromagnetic Theory, El-Hawar Ed., IEEE Press, 2007.
19. Woods, J. W., Multidimensional Signal, Image, and Video Processing and Coding, Academic Press, 2011.
20. SciFace Software MuPAD (Multi Processing Algebra Data Tool), SciFace Software, 2012.
doi:www.mupad.de
21. The MathWorks Inc. "MATLAB (Matrix Laboratory)," The MathWorks Inc., 2012.
doi:www.mathworks.com Google Scholar