1. European Commission Directorate-General Communications Networks, Contents & Technology, "Lighting the cities: Accelerating the deployment of innovative lighting in European cities,", Report, http://ec.europa.eu, 2013. Google Scholar
2. The Zigbee Alliance, 2012, . Google Scholar
3. Benet, G., F. Blanes, J. E. Simo, and P. Perez, "Using infrared sensors for distance measurement in mobile robots," Robotics and Autonomous Systems, Vol. 1006, 1-12, Elsevier, 2002.
doi:10.2528/PIER09040701 Google Scholar
4. EnLight Project, http://www.enlight-project.eu/en/home/, , EnLight, 2011.
doi:10.2528/PIER06110902 Google Scholar
5. Wang, Z., P. Li, R. Xu, and W. Lin, "A compact X-band receiver front-end module based on low temperature co-fired ceramic technology," Progress In Electromagnetics Research, Vol. 92, 167-180, 2009.
doi:10.2528/PIER06110902 Google Scholar
6. Cui, B., C. Wang, and X.-W. Sun, "Microstrip array double-antenna (MADA) technology applied in millimeter wave compact radar front-end," Progress In Electromagnetics Research, Vol. 66, 125-136, 2006. Google Scholar
7., ETSI, "ETSI EN 302 858-1 electromagnetic compatibility and radio spectrum matters (ERM),", ETSI 1.2.1, 2011. Google Scholar
8. Federal Communications Commission, http://www.fcc.gov/oet/spectrum/table/fcctable.pdf, FCC, , 2010. Google Scholar
9. Gresham, I., A. Jenkins, R. Egri, C. Eswarappa, F. Kolak, R.Wohlert, J. Bennett, and J.-P. Lanteri, "Ultra wide band 24 GHz automotive radar front-end," IEEE MTT-S International Microwave Symposium Digest, Vol. 1, 369-372, 2003. Google Scholar
10. Ragonese, E., A. Scuderi, V. Giammello, E. Messina, and G. Palmisano, "A fully integrated 24 GHz UWB radar sensor for automotive applications," IEEE International Solid-State Circuits Conference — Digest of Technical Papers, (ISSCC), 306-307, 2009. Google Scholar
11. Notten, M., H. Veenstra, E. van der Heijden, G. Dolmans, and F. Jansen, "Antenna and flipchip circuit board design for a 24GHz short-range radar transceiver," IEEE MTT-S International Microwave Symposium Digest, 1155-1158, 2008.
doi:10.1109/TMTT.2012.2188814 Google Scholar
12. Ghazinour, A., P. Wennekers, J. Schmidt, Y. Yin, R. Reuter, and J. Teplik, "A fully-monolithic SiGe-BiCMOS transceiver chip for 24GHz applications," Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting, 181-184, 2003. Google Scholar
13. Lee, S., C.-Y. Kim, and S. Hong, "A K-band CMOS UWB radar transmitter with a bi-phase modulating pulsed oscillator," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 1405-1412, 2012. Google Scholar
14. Kim, C., P. Park, D.-Y. Kim, K.-H. Park, M. Park, M.-K. Cho, S. J. Lee, J.-G. Kim, Y. S. Eo, J. Park, D. Baek, J.-T. Oh, S. Hong, and H.-K. Yu, "A CMOS centric 77 GHz automotive radar architecture," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 131-134, 2012. Google Scholar
15., Infineon Technologies, "BGT24MTR11, silicon germanium 24GHz transceiver MMIC,", atasheet, 2013.
doi:10.1109/NEWCAS.2012.6329057 Google Scholar
16. Wang, B., G. Tasselli, C. Botteron, and P.-A. Farine, "System design of a 24GHz phasedarray front-end for low-power applications," Conference on Ph.D. Research in Microelectronics Electronics (PRIME), 1-4, 2012. Google Scholar
17. Tasselli, G., B. Wang, S. Ghamari, C. Robert, C. Botteron, and P.-A. Farine, "Development of a versatile low-power 24GHz phased array front-end in 90nm CMOS technology," IEEE International NEWCAS Conference, 465-468, 2012. Google Scholar
18. Wang, B., G. Tasselli, C. Botteron, and P.-A. Farine, "24 GHz LNA and vector modulator phase shifter for phased-array receiver in CMOS technology," IEEE International Symposium on Phased Array Systems and Technology (ARRAY), 89-92, 2013. Google Scholar
19. Alimenti, F., F. Placentino, A. Battistini, G. Tasselli, W. Bernardini, P. Mezzanotte, D. Rascio, V. Palazzari, S. Leone, A. Scarponi, N. Porzi, M. Comez, and L. Roselli, "A low-cost 24 GHz Doppler radar sensor for traffic monitoring implemented in standard discrete-component technology," European Microwave Conference (EuMW), 1441-1444, 2007. Google Scholar
20. Radetsky, L., "Streetlights for local roads," National Lighting Product Information Program NLPIP, 28 Pages, 2011. Google Scholar
21. Silver, S. and H. M. James, Microwave Antenna Theory and Design, McGraw-Hill Book Company, Inc., 1949.
22. Roselli, L., F. Alimenti, M. Comez, V. Palazzari, F. Placentino, N. Porzi, and A. Scarponi, "A cost driven 24GHz Doppler radar sensor development for automotive applications," European Microwave Conference (EuMW), 335-338, 2005. Google Scholar
23. Richards, M. A., J. A. Scheer, and W. A. Holm, "Principles of Modern Radar: Basic Principles,", SciTech Publishing, 2010.
doi:10.1007/978-3-642-13598-9 Google Scholar
24. Fortuny-Guasch, J. and J.-M. Chareau, "Radar cross section measurements of pedestrian dummies and humans in the 24/77 GHz frequency bands,", European Commission, Joint Research Centre, Institute for the Protection and Security of the Citizen, 2013. Google Scholar
25. Issakov, V., Microwave Circuits for 24GHz Automotive Radar in Silicon-based Technologies, Springer, 2010.
doi:10.1109/JSSC.2011.2118110
26. Hajimiri, A., "Mm-wave silicon ICs: Challenges and opportunities," IEEE Custom Integrated Circuits Conference, (CICC), 741-747, 2007. Google Scholar
27. Natarajan, A., S. K. Reynolds, M.-D. Tsai, S. T. Nicolson, J.-H. C. Zhan, D. G. Kam, D. Liu, Y.-L. O. Huang, A. Valdes-Garcia, and B. A. Floyd, "A fully-integrated 16-element phased-array receiver in SiGe BiCMOS for 60-GHz," IEEE Journal of Solid-State Circuits (JSSC), Vol. 46, No. 5, 1059-1075, 2011. Google Scholar
28. Proakis, J. G. and M. Salehi, Communication System Engineering, Prentice Hall, Upper Saddle River, New Jersey, 1994.
29. Dupuis, O., X. Sun, G. Carchon, P. Soussan, M. Ferndah, S. Decoutere, and W. De Raedt, "24GHz LNA in 90 nm RF-CMOS with high-Q above-IC inductors," IEEE European Solid-State Circuits Conference (ESSCIRC), 89-92, 2005.
doi:10.1109/LMWC.2011.2152387 Google Scholar
30. Nguyen, G. D., Y. Chiu, and M. Feng, "24-GHz low noise amplifier using coplanar waveguide series feedback in 130-nm CMOS," Asia Pacific Microwave Conference (APMC), 1148-1151, 2009.
doi:10.1109/JSSC.2005.857416 Google Scholar
31. Tsai, M.-H. and S. S. H. Hsu, "A 24GHz low-noise amplifier using RF junction varactors for noise optimization and CDM ESD protection in 90 nm CMOS," IEEE Microwave and Wireless Components Letters (MWCL), Vol. 27, No. 7, 374-376, 2011.
doi:10.1109/TMTT.2005.860896 Google Scholar
32. Paramesh, J., R. Bishop, K. Soumyanath, and D. J. Allstot, "A four-antenna receiver in 90-nm CMOS for beamforming and spatial diversity," IEEE Journal of Solid-State Circuits (JSSC), Vol. 40, No. 12, 2515-2524, 2005. Google Scholar
33. Wu, P.-S., H.-Y. Chang, M.-D. Tsai, T.-W. Huang, and H. Wang, "New miniature 15–20-GHz continuous-phase/amplitude control MMICs using 0.18-μm CMOS technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 10-19, 2006. Google Scholar
34. Yu, T. and G. M. Rebeiz, "A 4-channel 24–27 GHz CMOS differential phased-array receiver," IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 455-458, 2009.
doi:10.1109/JSSC.2007.907225 Google Scholar
35. Kim, W.-G., J. P. Thakur, H.-Y. Yu, S.-S. Choi, and Y.-H. Kim, "Ka-band hybrid phase shifter for analog phase shift range extension using 0.13-μm CMOS technology," IEEE International Symposium on Phased Array Systems and Technology (ARRAY), 603-606, 2010. Google Scholar
36. Koh, K. J. and G. M. Rebeiz, "0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays," IEEE Journal of Solid-State Circuits (JSSC), Vol. 42, No. 11, 2535-2546, 2007. Google Scholar
37. Kim, K.-J. and K. H. Ahn, "Design of 60GHz vector modulation based active phase shifter," IEEE International Symposium on Electronic Design, Test and Application (DELTA), 140-143, 2011. Google Scholar
38. Hossain, M., U. Pursche, C. Meliani, and W. Heinrich, "High-efficiency low-voltage 24 GHz VCO in 130 nm CMOS for FMCW radar applications," European Microwave Integrated Circuits Conference (EuMIC), 105-108, 2013. Google Scholar
39. Tormanen, M. and H. Sjoland, "A 24-GHz quadrature receiver front-end in 90-nm CMOS," Asia Pacific Microwave Conference (APMC), 1152-1155, 2009. Google Scholar
40. Cao, Y., M. Tiebout, and V. Issakov, "A 24 GHz FMCW radar transmitter in 0.13 μm CMOS," European Solid-State Circuits Conference (ESSCIRC), 498-501, 2008.
doi:10.1109/LMWC.2005.852772 Google Scholar
41. Malla, P., H. Lakdawala, K. Kornegay, and K. Soumyanath, "A 28mW spectrum-sensing reconfigurable 20 MHz 72 dB-SNR 70 dB-SNDR DT Sigma-Delta ADC for 802.11n/WiMAX receivers," IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 496-631, 2008. Google Scholar
42. Verma, A., L. Gao, K. O. Kenneth, and J. Lin, "A K-band down-conversion mixer with 1.4-GHz bandwidth in 0.13 μm CMOS technology," IEEE Microwave and Wireless Components Letters (MWCL), Vol. 15, No. 8, 493-495, 2005.
doi:10.1109/JSSC.2003.810055 Google Scholar
43. Shem-Tov, B., M. Kozak, and E. G. Friedman, "A high-speed CMOS OP-AMP design technique using negative Miller capacitance," IEEE International Conference on Electronics, Circuits and Systems (ICECS), 623-626, 2004. Google Scholar
44. Deiss, A. and Q. Huang, "A low-power 200-MHz receiver for wireless hearing aid devices," IEEE Journal of Solid-State Circuits (JSSC), Vol. 38, No. 5, 793-804, 2003. Google Scholar
45. Zhou, C., L. Zhang, D. Yang, Y.Wang, Z. Yu, and H. Qian, "A 24-GHz fully integrated phase-locked loop for 60-GHz beamforming," International Conference on Solid-State and Integrated Circuit Technology (ICSIC), 1-4, 2012. Google Scholar