Vol. 63
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-09-18
Analysis of the Proximity Coupling of a Planar Array Quasi-Lumped Element Resonator Antenna Based on Four Excitation Sources
By
Progress In Electromagnetics Research B, Vol. 63, 187-201, 2015
Abstract
In this paper, a simple-fed, low profile, 9×10 elements quasi-lumped planar antenna array is presented. The proposed resonator employs a quasi-lumped element resonator that uses interdigital capacitor (IDC) in parallel with a straight strip inductor shorted across the capacitor. The array elements were designed and then excited by a feed network of four coaxial probes situated at the bottom plane but separated from the ground plane using a plastic material. The entire array is divided into four sub-array lattices of 5×5 elements and excited by a coaxial probe located at the centre of the sub-arrays antenna structure, thus exciting the centre resonator who in turn excites the neighbouring elements via proximity coupling. The probes are connected based on Wilkinson power divider principle to provide in-phase excitation. An explicit method is introduced to quickly obtain the array factor (AF) characteristics for such proximity coupled rectangular planar array. Radiation pattern and the array factor are presented, and are further compared with those obtained by the simulation and experimental results. The proposed antenna comprises 9×10 elements array, each of which is 5.8×5.6 sq. mm in size, and the entire antenna structure is about 120×80 sq. mm.
Citation
Seyi Stephen Olokede, and Clement Anowe Adamariko, "Analysis of the Proximity Coupling of a Planar Array Quasi-Lumped Element Resonator Antenna Based on Four Excitation Sources," Progress In Electromagnetics Research B, Vol. 63, 187-201, 2015.
doi:10.2528/PIERB15022701
References

1. Janhsen, A., B. Schiek, and V. Hansen, "On the definition of quasi lumped elements in planar microwave circuits," 22nd European Microwave Conference, Vol. 1, 251-256, Sep. 5-9, 1992.

2. Sarabandi, K. and R. Azadegan, "Design of an efficient miniaturized UHF planar antenna," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 6, 1270-1276, 2003.
doi:10.1109/TAP.2003.812239

3. Abu-Abed, A. S. and R. G. Lindquist, "Capacitive interdigital sensor with inhomogeneous nematic liquid crystal film," Progress In Electromagnetics Research B, Vol. 7, 75-87, 2008.
doi:10.2528/PIERB08022901

4. Rosu, I., "Microstrip, strapline, and CPW design,", YO3DAC/VA3IUL, http://www.qsl.net/va3iul, 2014.

5. Bahl, I., Lumped Element for RF and Microwave Circuits, Artech House, 2003.

6. Avenhaus, B., "Characterization of high temperature superconducting thin films and their microwave application,", PhD Thesis, Faculty of Engineering, University of Birmingham, Sep. 1996.

7. Ain, M. F., S. S. Olokede, Y. M. Qasaymeh, A. Marzuki, J. J. Mohammed, S. Srimala, S. D. Hutagalung, Z. A. Ahmad, and M. Z. Abdulla, "A novel 5.8GHz quasi-lumped element resonator antenna," Int. J. Electron. Commun. (AEU), Vol. 67, 557-563, 2013.
doi:10.1016/j.aeue.2012.12.008

8. Huang, F., B. Avenhaus, and M. J. Lancaster, "Lumped-element switchable superconducting filters," IEE Proc. Microwave on Antennas Propag., Vol. 146, No. 3, 299-233, 1999.
doi:10.1049/ip-map:19990357

9. Wadell, B. C., Transmission Line Design Handbook, Artech House, Boston, 1991.

10. Su, H. T., F. Huang, and M. J. Lancaster, "Compact pseudo-lumped element quasi-elliptic filters," IEE Colloquium on Microwave Filters and Multiplexers, No. 2000/117, Nov. 2000.

11. Bogatin, E., "Design rule for microstrip capacitance," IEEE Trans. on Components, Hybrids and Manufacturing, Vol. 11, 253-259, Sep. 1988.
doi:10.1109/33.16649

12. Yin, X.-C., C.-L. Ruan, C.-Y. Ding, and J.-H. Chu, "A compact ultra-wideband microstrip antenna with multiple notches," Progress In Electromagnetics Research, Vol. 84, 321-332, 2008.
doi:10.2528/PIER08072801

13. Hong, J.-S., Microstrip Filters for RF/Microwave Applications, Wiley Inter Sciences, John Wiley & Sons, Hoboken, N. J., Jan. 6, 2011.

14. Naghed, M. and I. Wolf, "Equivalent capacitances of coplanar waveguide discontinuities and interdigitated capacitors using a three-dimension finite difference method," IEEE Trans. on Microwave Theory and Techniques, Vol. 38, No. 12, 1808-1815, 1990.
doi:10.1109/22.64560

15. Wheeler, H. A., "Transmission-line properties of a strip line between parallel planes," IEEE Trans. on Microwave Theory and Techniques, Vol. 26, No. 11, 866-876, 1978.
doi:10.1109/TMTT.1978.1129505

16. Gao, Y. X., K. M. Luk, and K. W. Leung, "Mutual coupling between rectangular dielectric resonator antenna by FDTD," Proc. Inst. Elect. Eng.-Microwave Antennas Propagation, Vol. 146, No. 4, 292-294, Aug. 1999.
doi:10.1049/ip-map:19990609

17. Gupta, I. J. and A. A. Kseinski, "Effect of mutual coupling on the performance of adaptive arrays," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 5, 785-791, 1983.
doi:10.1109/TAP.1983.1143128

18. Mamishev, A. V., K. Sundara-Rajan, F. Yang, and Y. Du, "Interdigital sensors and transducers," Proceedings of the IEEE, Vol. 92, No. 5, 808-845, May 2004.
doi:10.1109/JPROC.2004.826603

19. He, S., C. R. Simosvki, and M. Popov, "An explicit and efficient method for obtaining the radiation characteristics of wire antennas in metallic photonic band gap structures," Microwave and Optical Tech. Letters, Vol. 26, No. 2, 67-73, 2000.
doi:10.1002/1098-2760(20000720)26:2<67::AID-MOP1>3.0.CO;2-X

20. Simosvki, C. R. and S. He, "Antennas based on modified metallic photonic band gap structures consisting of capacitively loaded wires," Microwave and Optical Tech. Letters, Vol. 31, No. 3, 214-221, 2001.
doi:10.1002/mop.1401

21. Drossos, G., Z. Wu, and L. E. Davis, "Four-element planar arrays employing probe-fed cylindrical dielectric resonator antennas," Microwave and Optical Tech. Letters, Vol. 18, No. 5, 315-319, Aug. 1998.
doi:10.1002/(SICI)1098-2760(19980805)18:5<315::AID-MOP1>3.0.CO;2-B

22. Bartyzal, J., T. Bostik, P. Kavacs, T. Mikulaseky, J. Puskely, Z. Randa, L. Slama, J. Vorek, and D. Wolansky, "Antenna arrays for tactical communication systems: A comparative study," Radioengineering, Vol. 20, No. 4, 817-827, Dec. 2011.