Vol. 63
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2015-10-06
Dyadic Green's Functions for a Parallel Plate Waveguide Filled with Anisotropic Uniaxial Media
By
Progress In Electromagnetics Research B, Vol. 63, 249-261, 2015
Abstract
The dyadic Green's functions for magnetic and electric currents immersed in a parallel plate waveguide (PPWG) filled with dielectric-magnetic anisotropic uniaxial media are developed via a field-based approach. First, the principal Green's function is derived from the forced wave equation for currents immersed in an unbounded uniaxial media. Next, the scattered Green's function is developed from the unforced wave equation. Finally, the total Green's function is found by superposition and subsequent application of the appropriate boundary conditions. The Green's functions are derived from Maxwell's equations, using a spectral domain analysis and reveals several key physical insights. First, the expected longitudinal depolarization dyads are observed. The expected depolarizing terms arise through careful application of complex-plane analysis, leading to expressions that are valid both internal and external to the source region. Secondly, the identification and decomposition of the total Green's function into TEz and TMz field contributions is demonstrated. Thirdly, the mathematical forms of the principal and total Green's functions are shown to be physically intuitive. The primary contribution of this research is the development of the Green's functions for a parallel plate waveguide containing a dielectric and magnetic uniaxial medium directly from Maxwell's equations. Prior derivations considered dielectric-only uniaxial media in a parallel-plate waveguide, due to the relative ease of analysis and readily available inverse identities found in \cite{Chen_1983}. Inclusion of magnetic uniaxial characteristics adds considerable complexity (since no simplifying identities are available) and provides additional insight into the field behavior, thus representing a significant contribution to the electromagnetic analysis of complex media. Finally, practical applications of the Green's functions are considered, such as the non-destructive electromagnetic characterization of a variety of anisotropic uniaxial media.
Citation
Neil G. Rogers, and Michael John Havrilla, "Dyadic Green's Functions for a Parallel Plate Waveguide Filled with Anisotropic Uniaxial Media," Progress In Electromagnetics Research B, Vol. 63, 249-261, 2015.
doi:10.2528/PIERB15061406
References

1. Ali, S. M., T. M. Habashy, and J. A. Kong, "Spectral-domain Green's function in layered chiral media," JOSA A, Vol. 9, No. 3, 413-423, 1992.
doi:10.1364/JOSAA.9.000413

2. Bagby, J. S. and D. P. Nyquist, "Dyadic Green's functions for integrated electronic and optical circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 2, 207-210, 1987.
doi:10.1109/TMTT.1987.1133625

3. Balanis, C. A., Advanced Engineering Electromagnetics, Vol. 205, Wiley, 1989.

4. Ball, J. A. R. and P. J. Khan, "Source region electric field derivation by a dyadic Green’s function approach," IEE Proceedings H --- Microwaves, Optics and Antennas, Vol. 127, No. 5, 301-304, 1980.
doi:10.1049/ip-h-1.1980.0063

5. Chang, C. W., K. M. Chen, and J. Qian, "Nondestructive measurements of complex tensor permittivity of anisotropic materials using a waveguide probe system," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 7, 1081-1090, 1996.
doi:10.1109/22.508641

6. Chang, C. W., K. M. Chen, and J. Qian, "Nondestructive determination of electromagnetic parameters of dielectric materials at x-band frequencies using a waveguide probe system," IEEE Transactions on Instrumentation and Measurement, Vol. 46, No. 5, 1084-1092, 1997.
doi:10.1109/19.676717

7. Chen, H. C., Theory of Electromagnetic Waves: A Coordinate-free Approach, McGraw-Hill Book Company, 1983.

8. Chen, K. M., "A simple physical picture of tensor Green’s function in source region," Proceedings of the IEEE, Vol. 65, No. 8, 1202-1204, 1977.
doi:10.1109/PROC.1977.10669

9. Chew, W. C., "Some observations on the spatial and eigenfunction representations of dyadic Green’s functions," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 10, 1322-1327, 1989.
doi:10.1109/8.43544

10. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.

11. De Visschere, P., Electromagnetic Source Transformations and Scalarization in Stratified Gyrotropic Media, ArXiv e-prints, June 2009.

12. Dester, G. D., E. J. Rothwell, and M. J. Havrilla, "An extrapolation method for improving waveguide probe material characterization accuracy," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 5, 298-300, 2010.
doi:10.1109/LMWC.2010.2045600

13. Fikioris, J. G., "Electromagnetic field inside a current-carrying region," Journal of Mathematical Physics, Vol. 6, 1617, 1965.
doi:10.1063/1.1704702

14. Georgieva, N. K. and W. S. Weiglhofer, "Electromagnetic vector potentials and the scalarization of sources in a nonhomogeneous medium," Phys. Rev. E, Vol. 66, 046614, Oct. 2002.

15. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill Electrical and Electronic Engineering Series, 1961.

16. Havrilla, M., "Electric and magnetic field dyadic Green’s functions and depolarizing dyad for a magnetic current immersed in a uniaxial dielectric-filled parallel plate waveguide," 2011 XXXth URSI General Assembly and Scientific Symposium, 1-4, 2011.
doi:10.1109/URSIGASS.2011.6050349

17. Havrilla, M. J., "Scalar potential depolarizing dyad artifact for a uniaxial medium," Progress In Electromagnetics Research, Vol. 134, 151-168, 2013.
doi:10.2528/PIER12101214

18. Hyde IV, M. W. and M. J. Havrilla, "A non-destructive technique for determining complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
doi:10.2528/PIER07102405

19. Hyde, M. W., M. J. Havrilla, and A. E. Bogle, "A novel and simple technique for measuring low-loss materials using the two flanged waveguides measurement geometry," Measurement Science and Technology, Vol. 22, No. 8, 085704, 2011.
doi:10.1088/0957-0233/22/8/085704

20. Jakoby, B. and F. Olyslager, "Singularity in green dyadics for uniaxial bianisotropic media," Electronics Letters, Vol. 31, No. 10, 779-781, 1995.
doi:10.1049/el:19950544

21. Lindell, I. V. and F. Olyslager, "Potentials in bi-anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 3-18, 2001.
doi:10.1163/156939301X00571

22. Lindell, I. V., A. H. Sihvola, and S. Tretyakov, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Inc, 1994.

23. Mackay, T. G. and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide, World Scientific Publishing Company Incorporated, 2010.

24. Niu, M., Y. Su, J. Yan, C. Fu, and D. Xu, "An improved open-ended waveguide measurement technique on parameters εγ and μγ of high-loss materials," IEEE Transactions on Instrumentation and Measurement, Vol. 47, No. 2, 476-481, ID: 1, 1998.

25. Przeziecki, S. and R. A. Hurd, "A note on scalar hertz potentials for gyrotropic media," Applied Physics, Vol. 20, No. 4, 313-317, 1979.
doi:10.1007/BF00895002

26. Seal, M. D., M. W. Hyde IV, and M. J. Havrilla, "Nondestructive complex permittivity and permeability extraction using a two-layer dual-waveguide probe measurement geometry," Progress In Electromagnetics Research, Vol. 123, 123-142, 2012.
doi:10.2528/PIER11111108

27. Stratton, J. A., Electromagnetic Theory, IEEE Press Series on Electromagnetic Wave Theory, 2007.

28. Van Bladel, J., "Some remarks on Green's dyadic for infinite space," IRE Transactions on Antennas and Propagation, Vol. 9, No. 6, 563-566, 1961.
doi:10.1109/TAP.1961.1145064

29. Viola, M. S. and D. P. Nyquist, "An observation on the Sommerfeld-integral representation of the electric dyadic Green's function for layered media," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 8, 1289-1292, 1988.
doi:10.1109/22.3672

30. Weiglhofer, W. S., "Scalarisation of Maxwell's equations in general inhomogeneous bianisotropic media," IEE Proceedings H --- Microwaves, Antennas and Propagation, Vol. 134, No. 4, 357-360, August 1987.
doi:10.1049/ip-h-2.1987.0070

31. Weiglhofer, W. S., "Frequency-dependent dyadic green functions for bianisotropic media," Advanced Electromagnetism: Foundations, Theory, Applications, 376-389, 1995.
doi:10.1142/9789812831323_0013

32. Weiglhofer, W. S., "Electromagnetic field in the source region: A review," Electromagnetics, Vol. 19, No. 6, 563-577, 1999.
doi:10.1080/02726349908908674

33. Weiglhofer, W. S., "Hertz potentials in complex medium electromagnetics,", Technical report, DTIC Document, 2000.
doi:10.1080/02726349908908674

34. Weiglhofer, W. S., Scalar Hertz Potentials for Linear Bianisotropic Mediums, John Wiley, 2000.

35. Weiglhofer, W. S., "Scalar hertz potentials for nonhomogeneous uniaxial dielectric-magnetic mediums," International Journal of Applied Electromagnetics and Mechanics, Vol. 11, No. 3, 131-140, 2000.

36. Weiglhofer, W. S. and S. O. Hansen, "Faraday chiral media revisited. I. Fields and sources," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 807-814, May 1999.
doi:10.1109/8.774134

37. Weiglhofer, W. S. and A. Lakhtakia, "Introduction to complex mediums for optics and electromagnetics," Society of Photo Optical, Vol. 123, 2003.

38. Yaghjian, A. D., "Electric dyadic green’s functions in the source region," Proceedings of the IEEE, Vol. 68, No. 2, 248-263, 1980.
doi:10.1109/PROC.1980.11620