1. Ali, S. M., T. M. Habashy, and J. A. Kong, "Spectral-domain Green's function in layered chiral media," JOSA A, Vol. 9, No. 3, 413-423, 1992.
doi:10.1364/JOSAA.9.000413 Google Scholar
2. Bagby, J. S. and D. P. Nyquist, "Dyadic Green's functions for integrated electronic and optical circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 35, No. 2, 207-210, 1987.
doi:10.1109/TMTT.1987.1133625 Google Scholar
3. Balanis, C. A., Advanced Engineering Electromagnetics, Vol. 205, Wiley, 1989.
4. Ball, J. A. R. and P. J. Khan, "Source region electric field derivation by a dyadic Green’s function approach," IEE Proceedings H --- Microwaves, Optics and Antennas, Vol. 127, No. 5, 301-304, 1980.
doi:10.1049/ip-h-1.1980.0063 Google Scholar
5. Chang, C. W., K. M. Chen, and J. Qian, "Nondestructive measurements of complex tensor permittivity of anisotropic materials using a waveguide probe system," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 7, 1081-1090, 1996.
doi:10.1109/22.508641 Google Scholar
6. Chang, C. W., K. M. Chen, and J. Qian, "Nondestructive determination of electromagnetic parameters of dielectric materials at x-band frequencies using a waveguide probe system," IEEE Transactions on Instrumentation and Measurement, Vol. 46, No. 5, 1084-1092, 1997.
doi:10.1109/19.676717 Google Scholar
7. Chen, H. C., Theory of Electromagnetic Waves: A Coordinate-free Approach, McGraw-Hill Book Company, 1983.
8. Chen, K. M., "A simple physical picture of tensor Green’s function in source region," Proceedings of the IEEE, Vol. 65, No. 8, 1202-1204, 1977.
doi:10.1109/PROC.1977.10669 Google Scholar
9. Chew, W. C., "Some observations on the spatial and eigenfunction representations of dyadic Green’s functions," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 10, 1322-1327, 1989.
doi:10.1109/8.43544 Google Scholar
10. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.
11. De Visschere, P., Electromagnetic Source Transformations and Scalarization in Stratified Gyrotropic Media, ArXiv e-prints, June 2009.
12. Dester, G. D., E. J. Rothwell, and M. J. Havrilla, "An extrapolation method for improving waveguide probe material characterization accuracy," IEEE Microwave and Wireless Components Letters, Vol. 20, No. 5, 298-300, 2010.
doi:10.1109/LMWC.2010.2045600 Google Scholar
13. Fikioris, J. G., "Electromagnetic field inside a current-carrying region," Journal of Mathematical Physics, Vol. 6, 1617, 1965.
doi:10.1063/1.1704702 Google Scholar
14. Georgieva, N. K. and W. S. Weiglhofer, "Electromagnetic vector potentials and the scalarization of sources in a nonhomogeneous medium," Phys. Rev. E, Vol. 66, 046614, Oct. 2002. Google Scholar
15. Harrington, R. F., Time-harmonic Electromagnetic Fields, McGraw-Hill Electrical and Electronic Engineering Series, 1961.
16. Havrilla, M., "Electric and magnetic field dyadic Green’s functions and depolarizing dyad for a magnetic current immersed in a uniaxial dielectric-filled parallel plate waveguide," 2011 XXXth URSI General Assembly and Scientific Symposium, 1-4, 2011.
doi:10.1109/URSIGASS.2011.6050349 Google Scholar
17. Havrilla, M. J., "Scalar potential depolarizing dyad artifact for a uniaxial medium," Progress In Electromagnetics Research, Vol. 134, 151-168, 2013.
doi:10.2528/PIER12101214 Google Scholar
18. Hyde IV, M. W. and M. J. Havrilla, "A non-destructive technique for determining complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
doi:10.2528/PIER07102405 Google Scholar
19. Hyde, M. W., M. J. Havrilla, and A. E. Bogle, "A novel and simple technique for measuring low-loss materials using the two flanged waveguides measurement geometry," Measurement Science and Technology, Vol. 22, No. 8, 085704, 2011.
doi:10.1088/0957-0233/22/8/085704 Google Scholar
20. Jakoby, B. and F. Olyslager, "Singularity in green dyadics for uniaxial bianisotropic media," Electronics Letters, Vol. 31, No. 10, 779-781, 1995.
doi:10.1049/el:19950544 Google Scholar
21. Lindell, I. V. and F. Olyslager, "Potentials in bi-anisotropic media," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 1, 3-18, 2001.
doi:10.1163/156939301X00571 Google Scholar
22. Lindell, I. V., A. H. Sihvola, and S. Tretyakov, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Inc, 1994.
23. Mackay, T. G. and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide, World Scientific Publishing Company Incorporated, 2010.
24. Niu, M., Y. Su, J. Yan, C. Fu, and D. Xu, "An improved open-ended waveguide measurement technique on parameters εγ and μγ of high-loss materials," IEEE Transactions on Instrumentation and Measurement, Vol. 47, No. 2, 476-481, ID: 1, 1998. Google Scholar
25. Przeziecki, S. and R. A. Hurd, "A note on scalar hertz potentials for gyrotropic media," Applied Physics, Vol. 20, No. 4, 313-317, 1979.
doi:10.1007/BF00895002 Google Scholar
26. Seal, M. D., M. W. Hyde IV, and M. J. Havrilla, "Nondestructive complex permittivity and permeability extraction using a two-layer dual-waveguide probe measurement geometry," Progress In Electromagnetics Research, Vol. 123, 123-142, 2012.
doi:10.2528/PIER11111108 Google Scholar
27. Stratton, J. A., Electromagnetic Theory, IEEE Press Series on Electromagnetic Wave Theory, 2007.
28. Van Bladel, J., "Some remarks on Green's dyadic for infinite space," IRE Transactions on Antennas and Propagation, Vol. 9, No. 6, 563-566, 1961.
doi:10.1109/TAP.1961.1145064 Google Scholar
29. Viola, M. S. and D. P. Nyquist, "An observation on the Sommerfeld-integral representation of the electric dyadic Green's function for layered media," IEEE Transactions on Microwave Theory and Techniques, Vol. 36, No. 8, 1289-1292, 1988.
doi:10.1109/22.3672 Google Scholar
30. Weiglhofer, W. S., "Scalarisation of Maxwell's equations in general inhomogeneous bianisotropic media," IEE Proceedings H --- Microwaves, Antennas and Propagation, Vol. 134, No. 4, 357-360, August 1987.
doi:10.1049/ip-h-2.1987.0070 Google Scholar
31. Weiglhofer, W. S., "Frequency-dependent dyadic green functions for bianisotropic media," Advanced Electromagnetism: Foundations, Theory, Applications, 376-389, 1995.
doi:10.1142/9789812831323_0013 Google Scholar
32. Weiglhofer, W. S., "Electromagnetic field in the source region: A review," Electromagnetics, Vol. 19, No. 6, 563-577, 1999.
doi:10.1080/02726349908908674 Google Scholar
33. Weiglhofer, W. S., "Hertz potentials in complex medium electromagnetics,", Technical report, DTIC Document, 2000.
doi:10.1080/02726349908908674 Google Scholar
34. Weiglhofer, W. S., Scalar Hertz Potentials for Linear Bianisotropic Mediums, John Wiley, 2000.
35. Weiglhofer, W. S., "Scalar hertz potentials for nonhomogeneous uniaxial dielectric-magnetic mediums," International Journal of Applied Electromagnetics and Mechanics, Vol. 11, No. 3, 131-140, 2000. Google Scholar
36. Weiglhofer, W. S. and S. O. Hansen, "Faraday chiral media revisited. I. Fields and sources," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 5, 807-814, May 1999.
doi:10.1109/8.774134 Google Scholar
37. Weiglhofer, W. S. and A. Lakhtakia, "Introduction to complex mediums for optics and electromagnetics," Society of Photo Optical, Vol. 123, 2003. Google Scholar
38. Yaghjian, A. D., "Electric dyadic green’s functions in the source region," Proceedings of the IEEE, Vol. 68, No. 2, 248-263, 1980.
doi:10.1109/PROC.1980.11620 Google Scholar