1., IPC-TM-650 Test Methods Manual, (http://www.ipc.org/test-methods.aspx).
doi:10.1109/TEMC.2009.2037971
2. Deutsch, A., R. S. Krabbenhoft, K. L.Melde, C. W. Surovic, G. A. Katopis, G. V. Kopcsay, Z. Zhou, Z. Chen, Y. H. Kwark, T.-M. Winkel, X. Gu, and T. E. Standaert, "Application of the short-pulse propagation technique for broadband characterization of PCB and other interconnect technologies," IEEE Transactions on Electromagnetic Compatibility, Vol. 52, No. 2, 266-287, May 2010. Google Scholar
3., Keysight Application Note, 5990-8443EN, August 1, 2014.
4. Loyer, J. and R. Kunze, "SET2DIL: Method to derive differential insertion loss from single-ended TDR/TDT measurements," DesignCon 2010, Santa Clara, CA, USA, 2010. Google Scholar
5. Huang, S., J. Loyer, R. Kunze, and B. Wu, "Method to reduce coupon lengths for transmission line S-parameter measurements through elimination of guided-wave multiple reflections," PIERS Proceedings, 2502-2509, Guangzhou, August 25-28, 2014. Google Scholar
6. Huang, S., J. Loyer, R. Kunze, and B. Wu, "Method to reduce coupon length for S-parameter measurements," DesignCon 2015, Santa Clara, CA, January 27-30, 2015. Google Scholar
7. Huang, S., "Method to improve the accuracy of mixed-mode S-parameters derived from single-ended results and application to shorter test coupon design," IEEE International Symposium on Electromagnetic Compatibility, Santa Clara, CA, March 15-20, 2015. Google Scholar
8. Huang, S. and B. Lee, "Novel de-embedding method with look-up table for characterization of interconnects," 2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS), San Jose, CA, October 25-28, 2015. Google Scholar
9. Hsu, J., T. Su, K. Xiao, X. Ye, S. Huang, and Y. L. Li, "Delta-L methodology for efficient PCB trace loss characterization," 2014 9th IEEE International In Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), 113-116, 2014. Google Scholar
10. Ye, X., J. Fan, and J. L. Drewniak, "New de-embedding techniques for PCB transmission-line characterization," DesignCon 2015, Santa Clara, CA, January 27-30, 2015.
doi:10.2528/PIER06111204 Google Scholar
11. Kumar, A. and G. Singh, "Measurement of dielectric constant and loss factor of the dielectric material at microwave frequencies," Progress In Electromagnetics Research, Vol. 69, 47-54, 2007.
doi:10.2528/PIER07012801 Google Scholar
12. Wu, Y. Q., Z. X. Tang, B. Zhang, and Y. H. Xu, "Permeability measurement of magnetic materials in microwave frequency range using support vector machine regression," Progress In Electromagnetics Research, Vol. 70, 247-256, 2007.
doi:10.2528/PIERL08011501 Google Scholar
13. He, X., Z.-X. Tang, B. Zhang, and Y. Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
doi:10.1109/TED.2003.811396 Google Scholar
14. Tiemeijer, L. F. and R. J. Havens, "A calibrated lumped-element de-embedding technique for on-wafer RF characterization of high-quality inductors and high-speed transistors," IEEE Transactions on Electron Devices, Vol. 50, No. 3, 822-829, March 2003. Google Scholar
15. Cho, M. H., G. W. Huang, K. M. Chen, and A. S. Peng, "A novel cascade-based de-embedding method for on-wafer microwave characterization and automatic measurement," 2004 IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 1237-1240, 2004.
doi:10.2528/PIERL08072403 Google Scholar
16. Chou, Y.-H., M.-J. Jeng, Y.-H. Lee, and Y.-G. Jan, "Measurement of RF PCB dielectric properties and losses," Progress In Electromagnetics Research Letters, Vol. 4, 139-148, 2008.
doi:10.1163/1569393054069055 Google Scholar
17. Qian, C. and W. B. Dou, "A new approach for measuring permittivity of dielectric materials," Journal of Electromagnetic Waves and Applications, Vol. 19, 795-810, 2005.
doi:10.1163/156939305775525909 Google Scholar
18. Bogle, A., M. Havrilla, D. Nyquis, L. Kempel, and E. Rothwell, "Electromagnetic material characterization using a partially filled rectangular waveguide," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 10, 1291-1306, 2005.
doi:10.1109/22.362986 Google Scholar
19. Carroll, J., M. Li, and K. Chang, "New technique to measure transmission line attenuation," IEEE Trans. on Microwave Theory and Tech., Vol. 43, No. 1, 219-222, 1995.
doi:10.2528/PIERL11112102 Google Scholar
20. Zhao, W., H.-B. Qin, and L. Qiang, "A calibration procedure for two-port VNA with three measurement channels based on T-matrix," Progress In Electromagnetics Research Letters, Vol. 29, 35-42, 2012.
doi:10.1109/MMM.2008.919925 Google Scholar
21. Rumiantsev, A. and N. Ridler, "VNA calibration," IEEE Microwave Magazine, Vol. 9, No. 3, 86-99, 2008.
doi:10.1109/TMTT.2008.916952 Google Scholar
22. Ferrero, A., V. Teppati, M. Garelli, and A. Neri, "A novel calibration algorithm for a special class of multiport vector network analyzers," IEEE Trans. on Microw. Theory and Tech., Vol. 56, No. 3, 693-699, 2008.
doi:10.1109/22.85388 Google Scholar
23. Marks, R. B., "A multiline method of network analyzer calibration," IEEE Trans. on Microw. Theory and Tech., Vol. 39, No. 7, 1205-1215, 1991.
doi:10.1109/TMTT.2008.2002229 Google Scholar
24. Hasar, U. C., "A fast and accurate amplitude-only transmission-reflection method for complex permittivity determination of lossy materials," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 9, 2129-2135, 2008.
doi:10.2528/PIER09041405 Google Scholar
25. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.
doi:10.1088/0026-1394/47/2/S10 Google Scholar
26. Kaatze, U., "Techniques for measuring the microwave dielectric properties of materials," Metrologia, Vol. 47, No. 2, S91-S113, 2010.
doi:10.2528/PIERB08082701 Google Scholar
27. Zhang, H., S. Y. Tan, and H. S. Tan, "An improved method for microwave nondestructive dielectric measurement of layered media," Progress In Electromagnetics Research B, Vol. 10, 145-161, 2008.
doi:10.1163/156939309787612293 Google Scholar
28. Le Floch, J. M., F. Houndonougbo, V. Madrangeas, D. Cros, M. Guilloux-Viry, and W. Peng, "Thin film materials characterization using TE modes," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 549-559, 2009.
doi:10.1163/156939309788019831 Google Scholar
29. Jin, H., S. R. Dong, and D. M. Wang, "Measurement of dielectric constant of thin film materials at microwave frequencies," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5-6, 809-817, 2009.
doi:10.1163/156939309789108598 Google Scholar
30. Wu, Y. Q., Z. X. Tang, Y. H. Xu, and B. Zhang, "Measuring complex permeability of ferromagnetic thin films using microstrip transmission method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1303-1311, 2009.
doi:10.2528/PIERB07102001 Google Scholar
31. Challa, R. K., et al. "Permittivity measurement with a non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008. Google Scholar
32. Wu, Y., Z. Tang, Y. Yu, and X. He, "A new method to avoid crowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
doi:10.1109/TIM.2002.808081 Google Scholar
33. Kharkovsky, S. N., M. F. Akay, U. C. Hasar, and C. D. Atis, "Measurement and monitoring of microwave reflection and transmission properties of cement-based materials," IEEE Trans. Instrum. Meas., Vol. 51, No. 6, 1210-1218, 2002.
doi:10.1109/TIM.1970.4313932 Google Scholar
34. Nicolson, A. M. and G. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/PROC.1974.9382 Google Scholar
35. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974. Google Scholar
36. Smith, D. R. and S. Schultz, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104(5), 2002.
doi:10.1109/22.57336 Google Scholar
37. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 8, 1096-1103, 1990.
doi:10.1109/22.552032 Google Scholar
38. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.
doi:10.1109/MAP.2005.1532552 Google Scholar
39. Mahony, J. D., "Measurements to estimate the relative permittivity and loss tangent of thin, low-loss materials," IEEE Antennas Propag. Mag., Vol. 47, No. 3, 83-87, 2005.
doi:10.1109/TMTT.2003.815274 Google Scholar
40. Muqaibel, A. H. and A. Safaai-Jazi, "A new formulation for characterization of materials based on measured insertion transfer function," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 8, 1946-1951, 2003.
doi:10.1109/TMTT.1985.1133198 Google Scholar
41. Ness, J., "Broad-band permittivity measurements using the semi-automatic network analyzer," IEEE Trans. Microw. Theory Tech., Vol. 33, No. 11, 1222-1226, 1985.
doi:10.1109/22.392911 Google Scholar
42. Bockelman, D. E. and W. R. Eisenstadt, "Combined differential and common-mode scattering parameters: Theory and simulation," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 7, 1530-1539, 1995. Google Scholar