Vol. 66
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-03-01
Worst-Case Tolerance Synthesis for Low-Sidelobe Sparse Linear Arrays Using a Novel Self-Adaptive Hybrid Differential Evolution Algorithm
By
Progress In Electromagnetics Research B, Vol. 66, 91-105, 2016
Abstract
A worst-case tolerance synthesis problem for low-sidelobe sparse linear arrays is solved by using a novel self-adaptive hybrid differential evolution (SAHDE) algorithm. First, we establish a worst-case tolerance synthesis model for low-sidelobe sparse linear arrays, in which random position errors are considered and assumed to obey the Gaussian distributions. Through the random sampling, the random model is converted to a deterministic optimization problem. Then, a novel SAHDE algorithm is presented for solving the problem. As a modification to the existing hybrid differential evolution algorithm, a simplified quadratic interpolation (SQI) operator is used to tune the control parameters self-adaptively, establishing the connections between control parameters and the fitness values. In order to determine appropriate control parameter values quickly, a selection operation is also used. Detailed implementation procedure for the SAHDE algorithm is presented, and some numerical results show its effectiveness. Finally, for the deterministic optimization problem, we present a fast way for calculating its fitness values. The SAHDE algorithm is used to obtain optimal nominal element positions. Simulated results illustrate that the worst-case peak sidelobe levels for the sparse linear arrays are improved evidently. The SAHDE algorithm is efficient for solving the worst-case tolerance synthesis problem.
Citation
Tao Ni, Yong-Chang Jiao, Li Zhang, and Zibin Weng, "Worst-Case Tolerance Synthesis for Low-Sidelobe Sparse Linear Arrays Using a Novel Self-Adaptive Hybrid Differential Evolution Algorithm," Progress In Electromagnetics Research B, Vol. 66, 91-105, 2016.
doi:10.2528/PIERB16011403
References

1. Lo, Y. T. and S. W. Lee, "A study of space-tapered arrays," IEEE Trans. Antennas Propag., Vol. 14, No. 1, 22-30, Jan. 1966.
doi:10.1109/TAP.1966.1138612

2. Skolnik, M. I., G. Nemhauser, and J. W. Sherman, "Dynamic programming applied to unequally spaced arrays," IEEE Trans. Antennas Propag., Vol. 12, No. 1, 35-43, Jan. 1964.
doi:10.1109/TAP.1964.1138163

3. Kumar, B. P. and G. R. Branner, "Design of unequally for performance improvement," IEEE Trans. Antennas Propag., Vol. 47, No. 3, 511-523, Mar. 1999.
doi:10.1109/8.768787

4. Haupt, R. L., "Unit circle representation of aperiodic arrays," IEEE Trans. Antennas Propag., Vol. 43, No. 10, 1152-1155, Oct. 1995.
doi:10.1109/8.467654

5. Haupt, R. L., "Thinned arrays using genetic algorithms," IEEE Trans. Antennas Propag., Vol. 42, No. 7, 993-999, Jul. 199.
doi:10.1109/8.299602

6. Cheng, K. S., Z. S. He, and C. L. Han, "A modified real GA for the sparse linear array synthesis with multiple constraints," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 2169-2173, Jul. 2006.
doi:10.1109/TAP.2006.877211

7. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization," IEEE Trans. Antennas Propag., Vol. 53, No. 8, 2674-2679, Aug. 2005.
doi:10.1109/TAP.2005.851762

8. Rocca, P., G. Oliveri, and A. Massa, "Differential evolution as applied to electromagnetics," IEEE Antennas and Propagation Magazine, Vol. 53, No. 1, 38-49, 2011.
doi:10.1109/MAP.2011.5773566

9. Cen, L., Z. L. Yu, and W. Ser, "Linear aperiodic array synthesis using an improved genetic algorithm," IEEE Trans. Antennas Propag., Vol. 60, No. 2, 895-902, Feb. 2012.
doi:10.1109/TAP.2011.2173111

10. Zhang, L., Y. C. Jiao, B. Chen, and F. S. Zhang, "Synthesis of linear aperiodic arrays using a self- adaptive hybrid differential evolution algorithm," IET Microwaves, Antennas & Propag., Vol. 5, No. 12, 1524-1528, Dec. 2011.
doi:10.1049/iet-map.2010.0429

11. Goudos, S. K., K. Siakavara, T. Samaras, E. E. Vafiadis, and J. N. Sahalos, "Sparse linear array synthesis with multiple constraints using differential evolution with strategy adaptation," IEEE Antennas and Wire. Propag. Lett., Vol. 10, 670-673, 2011.
doi:10.1109/LAWP.2011.2161256

12. Schjaer-Jacobsen, H. and K. Madsen, "Algorithms for worst case tolerance optimization," IEEE Trans. Circuits & Systems, Vol. 26, No. 9, 775-783, Sep. 1979.
doi:10.1109/TCS.1979.1084700

13. Schjaer-Jacobsen, H., "Worst-case tolerance optimization of antenna system," IEEE Trans. Antennas Propag., Vol. 28, No. 2, 247-250, Mar. 1980.
doi:10.1109/TAP.1980.1142296

14. Jiao, Y. C., Y. H. Qi, and L.-Y. Zhang, "Tolerance optimization design for low sidelobe linear arrays," IEEE Antennas and Propagation Society International Symposium, 736-739, 1993.
doi:10.1109/APS.1993.385242

15. Anselmi, N., L. Manica, P. Rocca, and A. Massa, "Tolerance analysis of antenna arrays through interval arithmetic," IEEE Trans. Antennas Propag., Vol. 61, No. 11, 5496-5507, Nov. 2013.
doi:10.1109/TAP.2013.2276927

16. Krischuk, V., G. Shilo, and B. Artyushenko, "Tolerable linear antenna array design with genetic algorithm," 9th International Conference onthe Experience of Designing and Applications of CAD Systems in Microelectronics, 167-169, 2007.

17. Qin, A. K. and P. N. Suganthan, "Self-adaptive dfferential evolution algorithm for numerical optimization," 2005 IEEE Congress on Evolutionary Computation, Vol. 2, 1785-1791, 2005.
doi:10.1109/CEC.2005.1554904

18. Brest, J., S. Greiner, B. Boskovic, and V. Zumer, "Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems," IEEE Trans. on Evolutionary Computation, Vol. 10, No. 6, 646-657, Jun. 2006.
doi:10.1109/TEVC.2006.872133

19. Ali, M. M., A. Torn, and S. Vitanen, "A numerical comparison of some modified controlled random search algorithms," J. Global Optim., Vol. 11, 377-385, 1997.
doi:10.1023/A:1008236920512

20. Jiao, Y. C., C. Dang, Y. Leung, and Y. Hao, "A modification to the new version of the Price's algorithm for continuous global optimization problems," J. Global Optim., Vol. 36, 609-626, 2006.
doi:10.1007/s10898-006-9030-3

21. Li, H., Y. C. Jiao, and Y. P. Wang, "Integrating the simplifiedinterpolation into the genetic algorithm for constrained optimization problems," Computational Intelligence and Security, 247-254, Lecture Notes in Artificial Intelligence 3801, Springer-Verlag, Berlin, 2005.

22. Zhang, L., Y. C. Jiao, H. Li, and F. S. Zhang, "Antenna optimization by hybrid differential evolution," Int. J. RF and Microwave Comput. --- Aided Eng., Vol. 20, 51-55, 2010.

23. Massa, A., M. Donelli, F. G. B. De Natale, et al. "Planar antenna array control with genetic algorithms and adaptive array theory," IEEE Trans. Antennas Propag., Vol. 52, No. 11, 2919-2924, Nov. 2004.
doi:10.1109/TAP.2004.837523

24. Azaro, R., G. Boato, M. Donelli, et al. "Design of a prefractal monopolar antenna for 3.4--3.6 GHz Wi-Max band portable devices," IEEE Antennas and Wire. Propag. Lett., Vol. 5, 116-119, 2007.

25. Carlo, F., D. Massimo, and G. F.Walsh, "Particle-swarm optimization of broadband nanoplasmonic arrays," Optics Letters, Vol. 35, No. 2, 133-135, 2010.
doi:10.1364/OL.35.000133

26. Azaro, R., F. G. B. De Natale, M. Donelli, et al. "Optimized design of a multifunction/multiband antenna for automotive rescue systems," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 392-400, Feb. 2006.
doi:10.1109/TAP.2005.863387

27. Donelli, M., I. J. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011.
doi:10.2528/PIERM11040903

28. Oliveri, G., M. Donelli, and A. Massa, "Linear array thinning exploiting almost difference sets," IEEE Trans. Antennas Propag., Vol. 57, No. 12, 3800-3812, Dec. 2009.
doi:10.1109/TAP.2009.2027243

29. Oliveri, G., M. Donelli, and A. Massa, "ADS-based guidelines for thinned planar arrays," IEEE Trans. Antennas Propag., Vol. 58, No. 6, 1935-1948, Jun. 2010.
doi:10.1109/TAP.2010.2046858

30. Oliveri, G., "Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays," IEEE Trans. Antennas Propag., Vol. 59, No. 2, 467-481, Feb. 2011.
doi:10.1109/TAP.2010.2096400

31. Viani, F., G. Oliveri, and A. Massa, "Compressive sensing pattern matching techniques for synthesizing planar sparse arrays," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4577-4587, Sep. 2013.
doi:10.1109/TAP.2013.2267195

32. Poli, L., P. Rocca, N. Anselmi, and A. Massa, "Dealing with uncertainties on phase weighting of linear antenna arrays by means of interval-based tolerance analysis," IEEE Trans. Antennas Propag., Vol. 63, No. 7, 3229-3234, Jul. 2015.
doi:10.1109/TAP.2015.2421952

33. Rocca, P., N. Anselmi, and A. Massa, "Optimal synthesis of robust arrayconfigurations exploiting interval analysis and convex optimization," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3603-3612, Jul. 2014.
doi:10.1109/TAP.2014.2318071

34. Anselmi, N., P. Rocca, M. Salucci, and A. Massa, "Optimization of excitationtolerances for robust beamforming in linear arrays," IET Microwave, Antenna and Propagation, Vol. 10, No. 2, 208-214, 2016.
doi:10.1049/iet-map.2015.0508