1. Munson, R., "Conformal microstrip antennas and microstrip phased arrays," IEEE Trans. Antennas Propag., Vol. 22, No. 1, 74-78, 1974.
doi:10.1109/TAP.1974.1140723 Google Scholar
2. Derneryd, A. G., "Linearly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 24, No. 6, 846-851, 1976.
doi:10.1109/TAP.1976.1141445 Google Scholar
3. Derneryd, A. G., "A theoretical investigation of the rectangular microstrip antenna element," IEEE Trans. Antennas Propag., Vol. 26, No. 4, 532-535, 1978.
doi:10.1109/TAP.1978.1141890 Google Scholar
4. Carver, K. R. and J. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, 1981.
doi:10.1109/TAP.1981.1142523 Google Scholar
5. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley-Interscience, 2005.
6. Ghatak, R. and M. Pal, "Revisiting relations for modeling the input resistance of a rectangular microstrip antenna [Antenna Designer's Notebook]," IEEE Antennas Propag. Mag., Vol. 57, No. 4, 116-119, 2015.
doi:10.1109/MAP.2015.2453887 Google Scholar
7. Ying, H., D. R. Jackson, J. T. Williams, S. A. Long, and V. R. Komanduri, "Characterization of the input impedance of the inset-fed rectangular microstrip antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3314-3318, 2008.
doi:10.1109/TAP.2008.929532 Google Scholar
8. Basilio, L. I., M. A. Khayat, J. T. Williams, and S. A. Long, "The dependence of the input impedance on feed position of probe and microstrip line-fed patch antennas," IEEE Trans. Antennas Propag., Vol. 49, No. 1, 45-47, 2001.
doi:10.1109/8.910528 Google Scholar
9. Garvin, C., R. Munson, L. Ostwald, and K. Schroeder, "Missile base mounted microstrip antennas," IEEE Trans. Antennas Propag., Vol. 25, No. 5, 604-610, 1977.
doi:10.1109/TAP.1977.1141655 Google Scholar
10. Kan, H. K. and R. B. Waterhouse, "Size reduction technique for shorted patches," Electron. Lett., Vol. 35, No. 12, 948-949, 1999.
doi:10.1049/el:19990703 Google Scholar
11. Reed, S., L. Desclos, C. Terret, and S. Toutain, "Patch antenna size reduction by means of inductive slots," Microw. Opt. Technol. Lett., Vol. 29, No. 2, 79-81, 2001.
doi:10.1002/mop.1089 Google Scholar
12. Desclos, L., Y. Mahe, S. Reed, G. Poilasne, and S. Toutai, "Patch antenna size reduction by combining inductive loading and short-points technique," Microw. Opt. Technol. Lett., Vol. 30, No. 6, 385-386, 2001.
doi:10.1002/mop.1322 Google Scholar
13. Schaubert, D., F. Farrar, A. Sindoris, and S. Hayes, "Microstrip antennas with frequency agility and polarization diversity," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 118-123, 1981.
doi:10.1109/TAP.1981.1142546 Google Scholar
14. Sengupta, D. L., "Resonant frequency of a tunable rectangular patch antenna," Electron. Lett., Vol. 20, No. 15, 614-615, 1984.
doi:10.1049/el:19840423 Google Scholar
15. Lan, G. L. and D. L. Sengupta, "Tunable circular patch antennas," Electron. Lett., Vol. 21, No. 22, 1022-1023, 1985.
doi:10.1049/el:19850725 Google Scholar
16. Garg, R., et al., Microstrip Antenna Design Handbook, Artech House Inc., 2001.
17. Chakravarty, T. and A. De, "Design of tunable modes and dual-band circular patch antenna using shorting posts," IEE P. --- Microw. Anten. P., Vol. 146, No. 3, 224-228, 1999.
doi:10.1049/ip-map:19990629 Google Scholar
18. Chakravarty, T. and A. De, "Resonant frequency of a shorted circular patch with the use of a modified impedance expression for a metallic post," Microw. Opt. Technol. Lett., Vol. 33, No. 4, 252-256, 2002.
doi:10.1002/mop.10290 Google Scholar
19. Ghosh, D., et al., "Physical and quantitative analysis of compact rectangular microstrip antenna with shorted non-radiating edges for reduced cross-polarized radiation using modified cavity model," IEEE Antennas and Propagation Magazine, Vol. 56, No. 4, 61-72, 2014.
doi:10.1109/MAP.2014.6931658 Google Scholar
20. Wang, Y. J. and C. K. Lee, "Compact and broadband microstrip patch antenna for the 3G IMT- 2000 handsets applying styrofoam and shorting-posts," Progress In Electromagnetics Research, Vol. 47, 75-85, 2004.
doi:10.2528/PIER03100901 Google Scholar
21. Majumdar, B. and K. P. Esselle, "A dual-mode reconfigurable patch antenna and an extended transmission line model," Microw. Opt. Technol. Lett., Vol. 58, No. 1, 57-61, 2016.
doi:10.1002/mop.29497 Google Scholar
22. Majumdar, B. and K. P. Esselle, "Modelling the effect of a thin shorting post in an arbitrary position along the outer radiating edge of a rectangular patch antenna," Proc. Intnl. Symp. Antennas Propag. No. ISAP 2015), 84-86, Hobart, Australia, Nov. 2015. Google Scholar
23. Chen, W.-F., D. Yu, and S.-X. Gong, "An omnidirectional triple-band circular patch antenna based on open elliptical-ring slots and the shorting vias," Progress In Electromagnetics Research, Vol. 150, 197-203, 2015.
doi:10.2528/PIER15010201 Google Scholar
24. Biswas, M. and A. Mandal, "Experimental and theoretical investigation to predict the e®ect of superstrate on the impedance, bandwidth, and gain characteristics for a rectangular patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 16, 2093-2109, 2015.
doi:10.1080/09205071.2015.1039072 Google Scholar
25. Richards, W., L. Yuen, and D. Harrison, "An improved theory for microstrip antennas and applications," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 38-46, 1981.
doi:10.1109/TAP.1981.1142524 Google Scholar
26. Haskins, P. M., P. S. Hall, and J. S. Dahele, "Polarisation-agile active patch antenna," Electron. Lett., Vol. 30, No. 2, 98-99, 1994.
doi:10.1049/el:19940072 Google Scholar
27. Haskins, P. M. and J. S. Dahele, "Varactor-diode loaded passive polarisation-agile patch antenna," Electron. Lett., Vol. 30, No. 13, 1074-1075, 1994.
doi:10.1049/el:19940720 Google Scholar
28. Haskins, P. M. and J. S. Dahele, "Four-element varactor diode loaded polarisation-agile microstrip antenna array," Electron. Lett., Vol. 33, No. 14, 1186-1187, 1997.
doi:10.1049/el:19970801 Google Scholar
29. Haskins, P. M., P. S. Hall, and J. S. Dahele, "Active patch antenna element with diode tuning," Electron. Lett., Vol. 27, No. 20, 1846-1848, 1991.
doi:10.1049/el:19911147 Google Scholar
30. Waterhouse, R. B., "Modelling of Schottky-Barrier diode loaded microstrip array elements," Electron. Lett., Vol. 28, No. 19, 1799-1801, 1992.
doi:10.1049/el:19921147 Google Scholar
31. Waterhouse, R. B. and N. V. Shuley, "Dual frequency microstrip rectangular patches," Electron. Lett., Vol. 28, No. 7, 606-607, 1992.
doi:10.1049/el:19920382 Google Scholar
32. Waterhouse, R. B. and N. V. Shuley, "Scan performance of infinite arrays of microstrip patch elements loaded with varactor diodes," IEEE Trans. Antennas Propag., Vol. 41, No. 9, 1273-1280, 1993.
doi:10.1109/8.247754 Google Scholar
33. Waterhouse, R. B. and N. V. Shuley, "Full characterisation of varactor-loaded, probe-fed, rectangular, microstrip patch antennas," IEE P. --- Microw. Anten. P., Vol. 141, No. 5, 367-373, 1994.
doi:10.1049/ip-map:19941305 Google Scholar
34. Chakravarty, T., S. K. Sanyal, and A. De, "Resonant modes of circular microstrip radiator loaded with varactor diode," Radio Sci., Vol. 42, No. 4, RS4024, 2007.
doi:10.1029/2006RS003577 Google Scholar
35. Waterhouse, R. B., "The use of shorting posts to improve the scanning range of probe-fed microstrip patch phased arrays," IEEE Trans. Antennas Propag., Vol. 44, No. 3, 302-309, 1996.
doi:10.1109/8.486297 Google Scholar
36. Wei, W.-B., Q.-Z. Liu, Y.-Z. Yin, and H.-J. Zhou, "Reconfigurable microstrip patch antenna with switchable polarization," Progress In Electromagnetics Research, Vol. 75, 63-68, 2007.
doi:10.2528/PIER07053002 Google Scholar
37. Wang, K.-L. and Y.-F. Lin, "Small broadband rectangular microstrip antenna with chip-resistor loading," Electron. Lett., Vol. 33, No. 19, 1593-1594, 1997.
doi:10.1049/el:19971111 Google Scholar
38. Hum, S. V., J. Z. Chu, R. H. Johnston, and M. Okoniewski, "Efficiency of a resistively loaded microstrip patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 22-25, 2003.
doi:10.1109/LAWP.2003.810777 Google Scholar