Vol. 68
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2016-06-14
Extended Transmission-Line Modelling of Inset-Fed Reconfigurable Rectangular Microstrip Antennas
By
Progress In Electromagnetics Research B, Vol. 68, 123-140, 2016
Abstract
An extended transmission-line model is presented for an inset-fed rectangular microstrip patch antenna. The transmission-line model agrees to the cos4 impedance variation for inset-fed microstrip antennas with an addition of a corrective extended feed length upto the inner radiating edge. Verification of the model's complex reflection coefficient is concluded with good agreements with measured results. Further extension of the transmission-line model with for or more thin shorting post connected to multiple varactor diodes have been conducted. Fourty two test cases across five independent antenna designs have been worked upon. Results obtained using the transmission-line model are compared with those obtained with a 3D full-wave solver and measurements. In 69% of the test cases, the transmission-line models have less than 3% deviation to the measured or simulated results. 41% of them have less than 1% deviation. For the first two antennas, both simulated and measured results were compared with the transmission-line model. For the rest of three, results from the transmission-line model were compared to the simulated ones.
Citation
Budhaditya Majumdar, and Karu P. Esselle, "Extended Transmission-Line Modelling of Inset-Fed Reconfigurable Rectangular Microstrip Antennas," Progress In Electromagnetics Research B, Vol. 68, 123-140, 2016.
doi:10.2528/PIERB16041502
References

1. Munson, R., "Conformal microstrip antennas and microstrip phased arrays," IEEE Trans. Antennas Propag., Vol. 22, No. 1, 74-78, 1974.
doi:10.1109/TAP.1974.1140723        Google Scholar

2. Derneryd, A. G., "Linearly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 24, No. 6, 846-851, 1976.
doi:10.1109/TAP.1976.1141445        Google Scholar

3. Derneryd, A. G., "A theoretical investigation of the rectangular microstrip antenna element," IEEE Trans. Antennas Propag., Vol. 26, No. 4, 532-535, 1978.
doi:10.1109/TAP.1978.1141890        Google Scholar

4. Carver, K. R. and J. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 2-24, 1981.
doi:10.1109/TAP.1981.1142523        Google Scholar

5. Balanis, C. A., Antenna Theory: Analysis and Design, Wiley-Interscience, 2005.

6. Ghatak, R. and M. Pal, "Revisiting relations for modeling the input resistance of a rectangular microstrip antenna [Antenna Designer's Notebook]," IEEE Antennas Propag. Mag., Vol. 57, No. 4, 116-119, 2015.
doi:10.1109/MAP.2015.2453887        Google Scholar

7. Ying, H., D. R. Jackson, J. T. Williams, S. A. Long, and V. R. Komanduri, "Characterization of the input impedance of the inset-fed rectangular microstrip antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3314-3318, 2008.
doi:10.1109/TAP.2008.929532        Google Scholar

8. Basilio, L. I., M. A. Khayat, J. T. Williams, and S. A. Long, "The dependence of the input impedance on feed position of probe and microstrip line-fed patch antennas," IEEE Trans. Antennas Propag., Vol. 49, No. 1, 45-47, 2001.
doi:10.1109/8.910528        Google Scholar

9. Garvin, C., R. Munson, L. Ostwald, and K. Schroeder, "Missile base mounted microstrip antennas," IEEE Trans. Antennas Propag., Vol. 25, No. 5, 604-610, 1977.
doi:10.1109/TAP.1977.1141655        Google Scholar

10. Kan, H. K. and R. B. Waterhouse, "Size reduction technique for shorted patches," Electron. Lett., Vol. 35, No. 12, 948-949, 1999.
doi:10.1049/el:19990703        Google Scholar

11. Reed, S., L. Desclos, C. Terret, and S. Toutain, "Patch antenna size reduction by means of inductive slots," Microw. Opt. Technol. Lett., Vol. 29, No. 2, 79-81, 2001.
doi:10.1002/mop.1089        Google Scholar

12. Desclos, L., Y. Mahe, S. Reed, G. Poilasne, and S. Toutai, "Patch antenna size reduction by combining inductive loading and short-points technique," Microw. Opt. Technol. Lett., Vol. 30, No. 6, 385-386, 2001.
doi:10.1002/mop.1322        Google Scholar

13. Schaubert, D., F. Farrar, A. Sindoris, and S. Hayes, "Microstrip antennas with frequency agility and polarization diversity," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 118-123, 1981.
doi:10.1109/TAP.1981.1142546        Google Scholar

14. Sengupta, D. L., "Resonant frequency of a tunable rectangular patch antenna," Electron. Lett., Vol. 20, No. 15, 614-615, 1984.
doi:10.1049/el:19840423        Google Scholar

15. Lan, G. L. and D. L. Sengupta, "Tunable circular patch antennas," Electron. Lett., Vol. 21, No. 22, 1022-1023, 1985.
doi:10.1049/el:19850725        Google Scholar

16. Garg, R., et al., Microstrip Antenna Design Handbook, Artech House Inc., 2001.

17. Chakravarty, T. and A. De, "Design of tunable modes and dual-band circular patch antenna using shorting posts," IEE P. --- Microw. Anten. P., Vol. 146, No. 3, 224-228, 1999.
doi:10.1049/ip-map:19990629        Google Scholar

18. Chakravarty, T. and A. De, "Resonant frequency of a shorted circular patch with the use of a modified impedance expression for a metallic post," Microw. Opt. Technol. Lett., Vol. 33, No. 4, 252-256, 2002.
doi:10.1002/mop.10290        Google Scholar

19. Ghosh, D., et al., "Physical and quantitative analysis of compact rectangular microstrip antenna with shorted non-radiating edges for reduced cross-polarized radiation using modified cavity model," IEEE Antennas and Propagation Magazine, Vol. 56, No. 4, 61-72, 2014.
doi:10.1109/MAP.2014.6931658        Google Scholar

20. Wang, Y. J. and C. K. Lee, "Compact and broadband microstrip patch antenna for the 3G IMT- 2000 handsets applying styrofoam and shorting-posts," Progress In Electromagnetics Research, Vol. 47, 75-85, 2004.
doi:10.2528/PIER03100901        Google Scholar

21. Majumdar, B. and K. P. Esselle, "A dual-mode reconfigurable patch antenna and an extended transmission line model," Microw. Opt. Technol. Lett., Vol. 58, No. 1, 57-61, 2016.
doi:10.1002/mop.29497        Google Scholar

22. Majumdar, B. and K. P. Esselle, "Modelling the effect of a thin shorting post in an arbitrary position along the outer radiating edge of a rectangular patch antenna," Proc. Intnl. Symp. Antennas Propag. No. ISAP 2015), 84-86, Hobart, Australia, Nov. 2015.        Google Scholar

23. Chen, W.-F., D. Yu, and S.-X. Gong, "An omnidirectional triple-band circular patch antenna based on open elliptical-ring slots and the shorting vias," Progress In Electromagnetics Research, Vol. 150, 197-203, 2015.
doi:10.2528/PIER15010201        Google Scholar

24. Biswas, M. and A. Mandal, "Experimental and theoretical investigation to predict the e®ect of superstrate on the impedance, bandwidth, and gain characteristics for a rectangular patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 16, 2093-2109, 2015.
doi:10.1080/09205071.2015.1039072        Google Scholar

25. Richards, W., L. Yuen, and D. Harrison, "An improved theory for microstrip antennas and applications," IEEE Trans. Antennas Propag., Vol. 29, No. 1, 38-46, 1981.
doi:10.1109/TAP.1981.1142524        Google Scholar

26. Haskins, P. M., P. S. Hall, and J. S. Dahele, "Polarisation-agile active patch antenna," Electron. Lett., Vol. 30, No. 2, 98-99, 1994.
doi:10.1049/el:19940072        Google Scholar

27. Haskins, P. M. and J. S. Dahele, "Varactor-diode loaded passive polarisation-agile patch antenna," Electron. Lett., Vol. 30, No. 13, 1074-1075, 1994.
doi:10.1049/el:19940720        Google Scholar

28. Haskins, P. M. and J. S. Dahele, "Four-element varactor diode loaded polarisation-agile microstrip antenna array," Electron. Lett., Vol. 33, No. 14, 1186-1187, 1997.
doi:10.1049/el:19970801        Google Scholar

29. Haskins, P. M., P. S. Hall, and J. S. Dahele, "Active patch antenna element with diode tuning," Electron. Lett., Vol. 27, No. 20, 1846-1848, 1991.
doi:10.1049/el:19911147        Google Scholar

30. Waterhouse, R. B., "Modelling of Schottky-Barrier diode loaded microstrip array elements," Electron. Lett., Vol. 28, No. 19, 1799-1801, 1992.
doi:10.1049/el:19921147        Google Scholar

31. Waterhouse, R. B. and N. V. Shuley, "Dual frequency microstrip rectangular patches," Electron. Lett., Vol. 28, No. 7, 606-607, 1992.
doi:10.1049/el:19920382        Google Scholar

32. Waterhouse, R. B. and N. V. Shuley, "Scan performance of infinite arrays of microstrip patch elements loaded with varactor diodes," IEEE Trans. Antennas Propag., Vol. 41, No. 9, 1273-1280, 1993.
doi:10.1109/8.247754        Google Scholar

33. Waterhouse, R. B. and N. V. Shuley, "Full characterisation of varactor-loaded, probe-fed, rectangular, microstrip patch antennas," IEE P. --- Microw. Anten. P., Vol. 141, No. 5, 367-373, 1994.
doi:10.1049/ip-map:19941305        Google Scholar

34. Chakravarty, T., S. K. Sanyal, and A. De, "Resonant modes of circular microstrip radiator loaded with varactor diode," Radio Sci., Vol. 42, No. 4, RS4024, 2007.
doi:10.1029/2006RS003577        Google Scholar

35. Waterhouse, R. B., "The use of shorting posts to improve the scanning range of probe-fed microstrip patch phased arrays," IEEE Trans. Antennas Propag., Vol. 44, No. 3, 302-309, 1996.
doi:10.1109/8.486297        Google Scholar

36. Wei, W.-B., Q.-Z. Liu, Y.-Z. Yin, and H.-J. Zhou, "Reconfigurable microstrip patch antenna with switchable polarization," Progress In Electromagnetics Research, Vol. 75, 63-68, 2007.
doi:10.2528/PIER07053002        Google Scholar

37. Wang, K.-L. and Y.-F. Lin, "Small broadband rectangular microstrip antenna with chip-resistor loading," Electron. Lett., Vol. 33, No. 19, 1593-1594, 1997.
doi:10.1049/el:19971111        Google Scholar

38. Hum, S. V., J. Z. Chu, R. H. Johnston, and M. Okoniewski, "Efficiency of a resistively loaded microstrip patch antenna," IEEE Antennas Wireless Propag. Lett., Vol. 2, No. 1, 22-25, 2003.
doi:10.1109/LAWP.2003.810777        Google Scholar