1. Daniels, D. J., Ground Penetrating Radar, 2nd Ed., The Institution of Electrical Engineers, 2004.
doi:10.1049/PBRA015E
2. Carin, L., N. Geng, M. McClure, J. Sichina, and L. Nguyen, "Ultrawide-band synthetic-aperture radar for mine-field detection," IEEE Antennas and Propagation Magazine, Vol. 41, No. 2, 18-33, 1999.
doi:10.1109/74.755021 Google Scholar
3. Sullivan, A., R. Damarla, N. Geng, Y. Dong, and L. Carin, "Ultrawide-band synthetic aperture radar for detection of unexploded ordnance: Modeling and measurements," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 9, 1306-1315, 2000.
doi:10.1109/8.898763 Google Scholar
4. Taylor, J. D., Ultra Wideband Radar Technology, CRC Press, 2001.
5. Dogaru, T. and L. Carin, "Time-domain sensing of targets buried under a rough air-ground interface," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 3, 360-372, 1998.
doi:10.1109/8.662655 Google Scholar
6. Dogaru, T., L. Collins, and L. Carin, "Optimal time-domain detection of a deterministic target buried under a randomly rough interface," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 3, 313-326, 2001.
doi:10.1109/8.918604 Google Scholar
7. Rappaport, C., M. El-Shenawee, and H. Zhan, "Suppressing GPR clutter from randomly rough ground surfaces to enhance nonmetallic mine detection," Subsurface Sensing Technologies and Applications, Vol. 4, No. 4, 311-326, 2003.
doi:10.1023/A:1026352615393 Google Scholar
8. Zhang, G. F. and L. Tsang, "Angular correlation function of wave scattering by a random rough surface and discrete scatterers and its application in the detection of a buried object," Waves in Random Media, Vol. 7, 467-478, 1997. Google Scholar
9. Zhang, G. F., L. Tsang, and Y. Kuga, "Studies of the angular correlation function of scattering by random rough surfaces with and without a buried object," IEEE Transactions on Geoscience and Remote Sensing, Vol. 35, No. 2, 444-453, 1997.
doi:10.1109/36.563283 Google Scholar
10. Cmielewski, O., M. Saillard, and H. Tortel, "Detection of buried objects beneath a rough surface," Waves in Random and Complex Media, Vol. 16, 417-431, 2006.
doi:10.1080/17455030600719687 Google Scholar
11. Morelle, N., M. Testorf, N. Thirion-Moreau, and M. Saillard, "Electromagnetic probing for target detection: Rejection of surface clutter based on the Wigner distribution," Journal of the Optical Society of America A-optics Image Science and Vision, Vol. 26, No. 5, 1178-1186, 2009.
doi:10.1364/JOSAA.26.001178 Google Scholar
12. Efremov, A. M., V. I. Koshelev, B. M. Kovalchuk, V. V. Plisko, and K. N. Sukhushin, "Generation and radiation of high-power ultrawideband nanosecond pulses," Journal of Communications Technology and Electronics, Vol. 52, No. 7, 756-764, 2007.
doi:10.1134/S1064226907070078 Google Scholar
13. Balzovskii, E. V., Y. I. Buyanov, and V. I. Koshelev, "Dual polarization receiving antenna array for recording of ultra-wideband pulses," Journal of Communications Technology and Electronics, Vol. 55, No. 2, 172-180, 2010.
doi:10.1134/S1064226910020087 Google Scholar
14. Warnick, K. F. and W. C. Chew, "Numerical simulations methods for rough surface scattering --- Topical Review," Waves in Random Media, Vol. 11, R1-R30, 2001.
doi:10.1088/0959-7174/11/1/201 Google Scholar
15. O'Neill, K., R. F. Lussky, Jr., and K. D. Paulsen, "Scattering from a metallic object embedded near the randomly rough surface of a lossy dielectric," IEEE Transactions on Geoscience and Remote Sensing, Vol. , No. , {, , Vol. 34, No. 2, 367-376, 1996.
doi:10.1109/36.485114 Google Scholar
16. Geng, N. and L. Carin, "Wide band electromagnetic scattering from a dielectric BOR buried in a layered lossy dispersive medium," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 4, 610-619, 1999.
doi:10.1109/8.768799 Google Scholar
17. Wang, X., C. F. Wang, Y. B. Gan, and L. W. Li, "Electromagnetic scattering from a circular target above or below rough surface," Progress In Electromagnetics Research, Vol. 40, 207-227, 2003.
doi:10.2528/PIER02111901 Google Scholar
18. Guan, B., J. F. Zhang, X. Y. Zhou, and T. J. Cui, "Electromagnetic scattering from objects above a rough surface using the method of moments with half-space Green's function," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 10, 3399-3405, 2009.
doi:10.1109/TGRS.2009.2022169 Google Scholar
19. Johnson, J. T., "Numerical study of scattering from an object above a rough surface," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 10, 1361-1367, 2002.
doi:10.1109/TAP.2002.802152 Google Scholar
20. Johnson, J. T. and R. J. Burkholder, "A study of scattering from an object below a rough surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 1, 59-66, 2004.
doi:10.1109/TGRS.2003.815670 Google Scholar
21. Ji, W.-J. and C.-M. Tong, "The E-PILE+SMCG for scattering from an object below 2D soil rough surface," Progress In Electromagnetics Research B, Vol. 33, 317-337, 2011.
doi:10.2528/PIERB11061004 Google Scholar
22. Bakr, S. A. and T. Mannseth, "An approximate hybrid method for electromagnetic scattering from an underground target," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 1, 99-107, 2013.
doi:10.1109/TGRS.2012.2198068 Google Scholar
23. Afifi, S., B. Mokhtar, R. Dusseaux, and A. Berrouk, "Electromagnetic wave scattering from rough layered interfaces: Analysis with the small perturbation method and the small slope approximation," Progress In Electromagnetics Research B, Vol. 57, 177-190, 2014. Google Scholar
24. Altuncu, Y., "A numerical method for electromagnetic scattering by 3-D dielectric objects buried under 2-D locally rough surfaces," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 8, 3634-3643, 2015.
doi:10.1109/TAP.2015.2438859 Google Scholar
25. Bourgeois, J. M. and G. S. Smith, "A complete electromagnetic simulation of the separated-aperture sensor for detecting buried land mines," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 10, 1419-1426, 1998.
doi:10.1109/8.725272 Google Scholar
26. Giannakis, I., A. Giannopoulos, and C. Warren, "A realistic FDTD numerical modelling framework of ground penetrating radar for landmine detection," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 37-51, 2015.
doi:10.1109/JSTARS.2015.2468597 Google Scholar
27. Fang, H., G. Lin, and R. Zhang, "The first-order symplectic euler method for simulation of GPR wave propagation in pavement structure," IEEE Transactions on Geoscience and Remote Sensing, Vol. 51, No. 1, 93-98, 2013.
doi:10.1109/TGRS.2012.2202121 Google Scholar
28. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed., Artech House, 2000.
29. Leschanskiy, I., G. N. Lebedeva, and V. D. Schumilin, "Electrical parameters of sandy and loamy soils in the range of centimeter, decimeter and meter wavelength," Radiophysics and Quantum Electronics, Vol. 14, No. 4, 445-451, 1971.
doi:10.1007/BF01030730 Google Scholar
30. Teixeira, F. L., W. C. Chew, M. Straka, M. L. Oristaglio, and T. Wang, "Finite-difference time domain simulation of ground penetrating radar on dispersive, inhomogeneous, and conductive soils," IEEE Transactions on Geoscience and Remote Sensing, Vol. 36, No. 11, 1928-1937, 1998.
doi:10.1109/36.729364 Google Scholar