Vol. 76
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-06-23
Fast Design of Asymmetrical Permanent Magnet Synchronous Machines That Minimize Pulsating Torque
By
Progress In Electromagnetics Research B, Vol. 76, 111-123, 2017
Abstract
Torque pulsations in Permanent Magnet Synchronous Machines are mainly created by interaction between the permanent magnets and stator teeth, harmonics in the stator current, steel saturation and partial magnet demagnetization. As a consequence of torque ripple, there are increased noise and vibrations. To overcome them, some methods for reducing pulsating torque include controlled-asymmetry. The strategy seeks for compensate or cancel out spatial harmonics of flux density in the air gap. This work proposes an analytical method based upon sub-domain model that allows techniques such as stator teeth pairing, slot opening shift, nonuniform teeth, tangential shift of magnets, different magnet widths, among others, to be utilized and quickly analyzed. Since asymmetries introduce several degrees of freedom, the design of Permanent Magnet Synchronous Machines can be accelerated by means of analytical-based tools. The proposed model is validated with Finite Element method.
Citation
Alejandro J. Pina Ortega, "Fast Design of Asymmetrical Permanent Magnet Synchronous Machines That Minimize Pulsating Torque," Progress In Electromagnetics Research B, Vol. 76, 111-123, 2017.
doi:10.2528/PIERB17031909
References

1. Bianchi, N. and S. Bolognani, "Design techniques for reducing the cogging torque in surface-mounted," IEEE Trans. Ind. Appl., Vol. 38, No. 5, 1259-1265, Sep. 2002.
doi:10.1109/TIA.2002.802989

2. Bianchi, N. and S. Bolognani, "Reduction of cogging force in PM linear motors by pole-shifting," IEE Proceedings — Electric Power Applications, 703-709, 2005.
doi:10.1049/ip-epa:20045082

3. Bianchi, N., S. Bolognani, D. Bon, and M. D. Pr, "Torque harmonic compensation in a synchronous reluctance motor," IEEE Trans. Energy Convers., Vol. 23, No. 2, 466-473, 2008.
doi:10.1109/TEC.2007.914357

4. Dosiek, L. and P. Pillay, "Cogging torque reduction in permanent magnet machines," IEEE Trans. Ind. Appl., Vol. 43, No. 6, 1565-1571, 2007.
doi:10.1109/TIA.2007.908160

5. Gysen, B. L. J., K. J. Meessen, J. J. H. Paulides, and E. A. Lomonova, "General formulation of the electromagnetic field distribution in machines and devices using fourier analysis," IEEE Trans. Magn., Vol. 46, No. 1, 39-52, 2010.
doi:10.1109/TMAG.2009.2027598

6. Hwang, S.-M., J.-B. Eom, G.-B. Hwang, W.-B. Jeong, and Y.-H. Jung, "Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing," IEEE Trans. Magn., Vol. 36, No. 5, 3144-3146, 2000.
doi:10.1109/20.908714

7. Krause, P., O. Wasynczuk, S. D. Sudhoff, and S. Pekarek, Analysis of Electric Machinery and Drive Systems, IEEE Press Series on Power Engineering, Wiley, 2013.
doi:10.1002/9781118524336

8. Liu, T., S. Huang, J. Gao, and K. Lu, "Cogging torque reduction by slot-opening shift for permanent magnet machines," IEEE Trans. Magn., Vol. 49, No. 7, 4028-4031, 2013.
doi:10.1109/TMAG.2013.2239977

9. Pfister, P.-D. and Y. Perriard, "Slotless permanent-magnet machines: General analytical magnetic field calculation," IEEE Trans. Magn., Vol. 47, No. 6, 1739-1752, Jun. 2011.
doi:10.1109/TMAG.2011.2113396

10. Pina, A. and L. Xu, "Analytical prediction of torque ripple in surface-mounted permanent magnet motors due to manufacturing variations," IEEE Trans. Energy Convers., Vol. 31, No. 4, 1634-1644, 2016.
doi:10.1109/TEC.2016.2598649

11. Pina, A. and L. Xu, "Investigation of effects of asymmetries on the performance of permanent magnet synchronous machines," IEEE Trans. Energy Convers., Vol. PP, No. 99, 1-1, 2017.

12. Pina, A., S. Paul, R. Islam, and L. Xu, "Analytical model for predicting effects of manufacturing variations on cogging torque in surface-mounted permanent magnet motors," IEEE Trans. Ind. Appl., Vol. 52, No. 4, 3050-3061, 2016.
doi:10.1109/TIA.2016.2554102

13. Wang, D., X. Wang, and S. Y. Jung, "Cogging torque minimization and torque ripple suppression in surface-mounted permanent magnet synchronous machines using different magnet widths," IEEE Trans. Magn., Vol. 49, No. 5, 2295-2298, 2013.
doi:10.1109/TMAG.2013.2242454

14. Wang, D., X. Wang, D. Qiao, Y. Pei, and S. Y. Jung, "Reducing cogging torque in surfacemounted permanent-magnet motors by nonuniformly distributed teeth method," IEEE Trans. Magn., Vol. 47, No. 9, 2231-2239, 2011.
doi:10.1109/TMAG.2011.2144612

15. Wang, D., X. Wang, Y. Yang, and R. Zhang, "Optimization of magnetic pole shifting to reduce cogging torque in solid-rotor permanent-magnet synchronous motors," IEEE Trans. Magn., Vol. 46, No. 5, 1228-1234, May 2010.
doi:10.1109/TMAG.2010.2044044

16. Yang, Y., X. Wang, C. Zhu, and C. Huang, "Study of magnet asymmetry for reduction of cogging torque in permanent magnet motors," IEEE Conference on Industrial Electronics and Applications, Vol. 2, 2325-2328, 2009.