1. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, 2003.
2. Carver, K. R. and J. W. Mink, "Microstrip antenna technology," IEEE Trans. Antennas Propagat., Vol. 29, 2-23, Jan. 1981.
doi:10.1109/TAP.1981.1142523 Google Scholar
3. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.
4. Waterhouse, R. B., Printed Antennas for Wireless Communications, John Wiley & Sons, 2007.
doi:10.1002/9780470512241
5. Jin, Y. and Z. Du, "Broadband dual-polarized F-probe fed stacked patch antenna for base stations," IEEE Antennas Wireless Propagate. Lett., Vol. 14, 1121-1124, 2015.
doi:10.1109/LAWP.2015.2395422 Google Scholar
6. Zhu, Q., S. Yang, and Z. Chen, "Modified corner-fed dual-polarised stacked patch antenna for micro-base station applications," Electro. Lett., Vol. 51, 604-606, Apr. 2015.
doi:10.1049/el.2015.0287 Google Scholar
7. Ali, M., T. M. Sayem, and V. K. Kunda, "A reconfigurable stacked microstrip patch antenna for satellite and terrestrial links," IEEE Trans. Vehic. Technol., Vol. 56, 426-435, Mar. 2007.
doi:10.1109/TVT.2007.891412 Google Scholar
8. Zhou, Y., C.-C. Chen, and J. L. Volakis, "Dual band proximity-fed stacked patch antenna for tri-band GPS applications," IEEE Trans. Antennas Propagat., Vol. 55, 220-223, Jan. 2007.
doi:10.1109/TAP.2006.888476 Google Scholar
9. Wang, Z., S. Fang, S. Fu, and S. Lv, "Dual-band probe-fed stacked patch antenna for GNSS applications," IEEE Antennas Wireless Propagate. Lett., Vol. 8, 100-103, 2009.
doi:10.1109/LAWP.2008.2012355 Google Scholar
10. Li, D., P. Guo, Q. Dai, and Y. Fu, "Broadband capacitively coupled stacked patch antenna for GNSS applications," IEEE Antennas Wireless Propagate. Lett., Vol. 11, 701-704, 2012.
doi:10.1109/LAWP.2012.2205129 Google Scholar
11. Falade, O. P., M. U. Rehman, Y. Gao, X. Chen, and C. G. Parini, "Single feed stacked patch circular polarized antenna for triple band GPS receivers," IEEE Trans. Antennas Propagat., Vol. 60, 4479-4484, Oct. 2012.
doi:10.1109/TAP.2012.2207354 Google Scholar
12. Wang, Z., S. Fang, S. Fu, and S. Jia, "Single-fed broadband circularly polarized stacked patch antenna with horizontally meandered strip for universal UHF RFID applications," IEEE Trans. Micro. Theory Tech., Vol. 59, 1066-1073, Apr. 2011.
doi:10.1109/TMTT.2011.2114010 Google Scholar
13. Gao, Y., R. Ma, Y. Wang, Q. Zhang, and C. Parini, "Stacked patch antenna with dual-polarization and low mutual coupling for massive MIMO," IEEE Trans. Antennas Propagat., Vol. 64, 4544-4549, Oct. 2016.
doi:10.1109/TAP.2016.2593869 Google Scholar
14. Hu, J., Z.-C. Hao, and W. Hong, "Design of a wideband quad-polarization reconfigurable patch antenna array using a stacked structure," IEEE Trans. Antennas Propagat., Vol. 65, 3014-3023, Jun. 2017.
doi:10.1109/TAP.2017.2695529 Google Scholar
15. Tiwari, H. and M. V. Kartikeyan, "A stacked microstrip patch antenna with fractal shaped defects," Progress In Electromagnetics Research C, Vol. 14, 185-195, 2010.
doi:10.2528/PIERC10052903 Google Scholar
16. Ghorbani, K. and R. B. Waterhouse, "Dual polarized wide-band aperture stacked patch antennas," IEEE Trans. Antennas Propagat., Vol. 52, 2171-2174, Aug. 2004.
doi:10.1109/TAP.2004.832484 Google Scholar
17. Anguera, J., C. Puente, and C. Borja, "A procedure to design stacked microstrip patch antennas based on a simple network model," Micro. Opt. Technol. Lett., Vol. 30, 149-151, Aug. 2001.
doi:10.1002/mop.1248 Google Scholar
18. Anguera, J., C. Puente, C. Borja, N. Delbene, and J. Soler, "Dual-frequency broad-band stacked microstrip patch antenna," IEEE Antennas Wireless Propagate. Lett., Vol. 2, 36-39, 2003.
doi:10.1109/LAWP.2003.811325 Google Scholar
19. Jang, W.-G. and J.-H. Choi, "Design of a wide and multiband aperture-stacked patch antenna with reflector," Micro. Opt. Technol. Lett., Vol. 49, 2822-2824, Nov. 2007.
doi:10.1002/mop.22876 Google Scholar
20. Lee, R. Q. and K. F. Lee, "Experimental study of the two-layer electromagnetically coupled rectangular patch antenna," IEEE Trans. Antennas Propagat., Vol. 38, 1298-1302, Aug. 1990.
doi:10.1109/8.56971 Google Scholar
21. Hassani, H. R. and D. M. Syahkal, "Study of electromagnetically coupled stacked rectangular patch antennas," IEE Proc. — Micro. Antennas Propagat., Vol. 142, 7-13, Feb. 1995.
doi:10.1049/ip-map:19951540 Google Scholar
22. Waterhouse, R. B., "Design of probe-fed stacked patches," IEEE Trans. Antennas Propagat., Vol. 47, 1780-1784, Dec. 1999.
doi:10.1109/8.817653 Google Scholar
23. Reineix, A. and B. Jecko, "Analysis of microstrip patch antennas using finite difference time domain method," IEEE Trans. Antennas Propagat., Vol. 31, 381-390, Mar. 1991. Google Scholar
24. Liu, Z.-F., P.-S. Kooi, L.-W. Li, M.-S. Leong, and T.-S. Yeo, "A method for designing broad-band microstrip antennas in multilayered planar structure," IEEE Trans. Antennas Propagat., Vol. 47, 1416-1420, Sep. 1999.
doi:10.1109/8.793321 Google Scholar
25. HFSS 13: Ansoft’s Corp, , .
26. Tagle, J. G. and C. G. Christodoulou, "Extended cavity model analysis of stacked microstrip ring antennas," IEEE Trans. Antennas Propagat., Vol. 45, 1626-1635, Nov. 1997.
doi:10.1109/8.650074 Google Scholar
27. Alexopoulos, N. G. and D. R. Jackson, "Fundamental superstrate (cover) effects on printed circuit antennas," IEEE Trans. Antennas Propagat., Vol. 32, 807-816, Aug. 1984.
doi:10.1109/TAP.1984.1143433 Google Scholar
28. Bernhard, J. T. and C. J. Tousignant, "Resonant frequencies of rectangular microstrip antennas with flush and spaced dielectric superstrates," IEEE Trans. Antennas Propagat., Vol. 47, 302-308, Feb. 1999.
doi:10.1109/8.761070 Google Scholar
29. Biswas, M. and M. Sen, "Design and development of rectangular patch antenna with superstrates for the application in portable wireless equipments and aircraft radome," Micro. Opt. Technol. Lett., Vol. 56, 883-893, Apr. 2014.
doi:10.1002/mop.28197 Google Scholar
30. James, J. R. and P. S. Hall, Handbook of Mcrostrip Antennas, Peter Peregrinus, 1989.
31. Biswas, M. and A. Mandal, "Experimental and theoretical investigation to predict the effect of superstrate on the impedance, bandwidth, and gain characteristics for a rectangular patch antenna," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 16, 2093-2109, 2015.
doi:10.1080/09205071.2015.1039072 Google Scholar
32. Deshpande, M. and M. Bailey, "Input impedance of microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 30, 645-650, Jul. 1982. Google Scholar
33. Abboud, F., J. P. Damiano, and A. Papiernik, "Simple model for the input impedance of coax-fed rectangular microstrip patch antenna for CAD," IEE Proc., Vol. 135, Pt. H, 323-326, Oct. 1988. Google Scholar
34. Chattopadhyay, S., M. Biswas, J. Y. Siddiqui, and D. Guha, "Rectangular microstrips with variable air gap and varying aspect ratio: Improved formulations and experiments," Micro. Opt. Technol. Lett., Vol. 51, No. 1, 169-173, Jan. 2009.
doi:10.1002/mop.24025 Google Scholar
35. Verma, A. K. and Nasimuddin, "Resonance frequency and bandwidth of rectangular microstrip antenna on thick substrate," IEEE Micro. Wireless Comp. Lett., Vol. 12, 60-62, Feb. 2002.
doi:10.1109/7260.982877 Google Scholar
36. Pozar, D. M., Microwave Engineering, John Wiley & Sons, Inc., 2012.
37. Khellaf, A., D. Thouroude, and J. P. Daniel, "Simple expression of rectangular patch’s resistance at resonance," Electron. Lett., Vol. 26, 1188-1190, Jul. 1990. Google Scholar
38. Hammerstad, E. O., "Equations for microstrip circuit design," Proc. 5th European Micro. Conf., 268-272, Hamburg, Sep. 1975. Google Scholar
39. James, J. R., P. S. Hall, and C. Wood, Microstrip Antenna --- Theory and Design, Peter Peregrinus, 1981.
doi:10.1049/PBEW012E
40. Chang, E., S. A. Long, and W. F. Richards, "Experimental investigation of electrically thick rectangular microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 34, 767-772, Jun. 1986.
doi:10.1109/TAP.1986.1143890 Google Scholar
41. Zhong, S.-S., G. Liu, and G. Qasim, "Closed form expressions for resonant frequency of rectangular patch antennas with multi dielectric layers," IEEE Trans. Antennas Propagat., Vol. 42, 1360-1363, Sept. 1994.
doi:10.1109/8.318667 Google Scholar
42. Svacina, J., "Analysis of multilayer microstrip lines by a conformal mapping method," IEEE Trans. Microwave Theory Tech., Vol. 40, 769-772, Apr. 1992.
doi:10.1109/22.127530 Google Scholar
43. Wheeler, H., "Transmission-line properties of parallel wide strips by a conformal mapping approximation," IEEE Trans. Microw. Theory Tech., Vol. 12, 280-289, Mar. 1964.
doi:10.1109/TMTT.1964.1125810 Google Scholar
44. Wheeler, H. A., "Transmission-line properties of parallel strips separated by a dielectric sheet," IEEE Trans. Microwave Theory Tech., Vol. 13, 172-185, Mar. 1965.
doi:10.1109/TMTT.1965.1125962 Google Scholar
45. Wolff, I. and N. Knoppik, "Rectangular and circular microstrip disk capacitors and resonators," IEEE Trans. Micro. Theory Tech., Vol. 22, 857-864, Oct. 1974. Google Scholar
47. Chew, W. C. and J. A. Kong, "Effects of fringing field on the capacitance of circular microstrip disk," IEEE Trans. Micro. Theory Tech., Vol. 28, 98-104, Feb. 1980.
doi:10.1109/TMTT.1980.1130017 Google Scholar