Vol. 79
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2018-01-18
Fraunhofer Diffraction by a Strip: Perturbation Method
By
Progress In Electromagnetics Research B, Vol. 79, 149-165, 2017
Abstract
We investigate the diffraction modeling of a plane wave by an infinitely thin and deformed perfectly conducting strip. We show that the diffraction pattern in the Fraunhofer domain can be obtained from efficiencies calculated for a periodic surface with an interpolation relationship; the elementary pattern of the periodic surface is identical to the strip. We consider the case where the deformation amplitude of the strip is small compared to its width. In this case, the propagation equation written in a curvilinear coordinate system is solved by a perturbation method inspired from quantum physics and extended to imaginary eigenvalues for evanescent waves. In the Fraunhofer approximation domain where the only waves are the propagative waves, the diffraction pattern obtained for a sinusoidal profile strip shows the phenomenon well known as apodization. Classically this phenomenon is obtained for physical optics with a slot in a screen with a variable transparency function similar to the profile function of the strip.
Citation
Anne Marie Gavaix, and Jean Chandezon, "Fraunhofer Diffraction by a Strip: Perturbation Method," Progress In Electromagnetics Research B, Vol. 79, 149-165, 2017.
doi:10.2528/PIERB17062808
References

1. Sommerfeld, A., Optics, Chap. V, New York Academic Press, 1954.

2. Born, M. and E. Wolf, Principles of Optics, Chap. XI, Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181

3. Bailey, P. B. and G. E. Barr, "Diffraction by a slit or strip," J. Math. Phys., Vol. 10, 1906-1913, 1969.
doi:10.1063/1.1664780

4. Kanaun, S. K., "A numerical method for the solution of electromagnetic wave diffraction problems on perfectly conducting screens," J. Comput. Phys., Vol. 176, 170-195, 2002.
doi:10.1006/jcph.2001.6974

5. Imran, A., Q. A. Naqvi, and K. Hongo, "Diffraction of electromagnetic plane wave by an impedance strip," Progress In Electromagnetics Research, Vol. 75, 303-318, 2007.
doi:10.2528/PIER07053104

6. Imran, A., Q. A. Naqvi, and K. Hongo, "Diffraction of electromagnetic plane wave from a slit in PEMC plane," Progress In Electromagnetics Research M, Vol. 8, 67-77, 2009.
doi:10.2528/PIERM09042207

7. Weinstein, L. A., The Theory of Diffraction and the Factorization Method, Chap. 8, Boulder, Golem, 1969.

8. Jones, D. S., Acoustic and Electromagnetic Waves, Chap. 9, Clarendon, Oxford, 1989.

9. Serdyuk, V. M., "Exact solutions for electromagnetic wave diffraction by a slot and strip," Int. J. Electron. Commun. (AEU), Vol. 65, 182-189, 2011.
doi:10.1016/j.aeue.2010.04.002

10. Cohen-Tannoundji, C., B. Diu, and F. Laloe, Quantum Mechanics, Vol. 2, Chap. XI, WileyInterscience, New York, 1991.

11. Courant, R., Differential and Integral Calculus, Vol. 1, Chap. IX, Blackie & Son Limited, London and Glasgow, 1965.

12. Petit, R., Electromagnetic Theory of Gratings, Chap. 1, Springer-Verlag, Heidelberg, 1980.
doi:10.1007/978-3-642-81500-3

13. Lauberborn, W., T. Kurz, and M. Wiesenfeldt, Coherent Optics, Chap. 9, Springer-Verlag, New York, 1995.
doi:10.1007/978-3-662-03144-5

14. Chandezon, J., D. Maystre, and G. Raoult, "A new theoretical method for diffraction gratings and its numerical application," J. Opt., Vol. 11, 235-241, 1980.
doi:10.1088/0150-536X/11/4/005

15. Chandezon, J., M. T. Dupuis, G. Cornet, and D. Maystre, "Multicoated gratings: A differential formalism applicable in the entire optical region," J. Opt. Soc. Am., Vol. 72, 839-846, 1982.
doi:10.1364/JOSA.72.000839

16. Li, L., J. Chandezon, G. Granet, and J. P. Plumey, "Rigorous and efficient grating-analysis method made easy for the optical engineers," Appl. Opt., Vol. 38, 304-313, 1999.
doi:10.1364/AO.38.000304

17. Gavaix, A. M., G. Granet, and J. Chandezon, "Diffraction of electromagnetic waves by periodic surfaces: Perturbation method," J. Opt., Vol. 12, 115709-115717, 2010.
doi:10.1088/2040-8978/12/11/115709

18. Gavaix, A. M., J. Chandezon, and G. Granet, "Propagative and evanescent waves diffracted by periodic surfaces: Perturbation method," Progress In Electromagnetics Research B, Vol. 34, 283-311, 2011.
doi:10.2528/PIERB11070504