College of Engineering and Informatics
National University of Ireland Galway
Ireland
HomepageCollege of Engineering and Informatics
National University of Ireland Galway
Ireland
HomepageElectronic and Electrical Engineering
National University of Ireland Galway
Ireland
Homepage1. Bath, P. M. W., "ABC of arterial and venous disease: Acute strok," BMJ, Vol. 320, No. 7239, 920-923, Apr. 2000.
doi:10.1136/bmj.320.7239.920 Google Scholar
2. Lee, B. and A. Newberg, "Neuroimaging in traumatic brain imaging," NeuroRX, Vol. 2, No. 2, 372-383, Apr. 2005.
doi:10.1602/neurorx.2.2.372 Google Scholar
3. Birenbaum, D., L. W. Bancroft, and G. J. Felsberg, "Imaging in acute stroke," West. J. Emerg. Med., Vol. 12, No. 1, 67-76, Feb. 2011. Google Scholar
4. Semenov, S., "Microwave tomography: Review of the progress towards clinical applications," Philos. Trans. A. Math. Phys. Eng. Sci., Vol. 367, 3021-3042, 2009.
doi:10.1098/rsta.2009.0092 Google Scholar
5. Garrett, J. and E. Fear, "A new breast phantom with a durable skin layer for microwave breast imaging," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1693-1700, 2015.
doi:10.1109/TAP.2015.2393854 Google Scholar
6. Mobashsher, A. T. and A. M. Abbosh, "Artificial human phantoms: Human proxy in testing microwave apparatuses that have electromagnetic interaction with the human body," IEEE Microw. Mag., Vol. 16, No. 16, 42-62, 2015.
doi:10.1109/MMM.2015.2419772 Google Scholar
7. Fear, E. C., P. M. Meaney, and M. Stuchly, "Microwaves for breast cancer detection?," IEEE Potential, Vol. 22, No. 1, 12-18, Feb. 2003.
doi:10.1109/MP.2003.1180933 Google Scholar
8. Garrett, J. and E. Fear, "Stable and flexible materials to mimic the dielectric properties of human soft tissues," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 599-602, 2014.
doi:10.1109/LAWP.2014.2312925 Google Scholar
9. Peyman, A., A. A. Rezazadeh, and C. Gabriel, "Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies," Phys. Med. Biol., Vol. 46, No. 6, 1617-1629, Jun. 2001.
doi:10.1088/0031-9155/46/6/303 Google Scholar
10. Kobayashi, T., T. Nojima, K. Yamada, and S. Uebayashi, "Dry phantom composed of ceramics and its application to SAR estimation," IEEE Trans. Microw. Theory Tech., Vol. 41, No. 1, 136-140, 1993.
doi:10.1109/22.210240 Google Scholar
11. Watanabe, S.-I., H. Taki, T. Nojima, and O. Fujiwara, "Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a hand-held portable radio," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 10, 1874-1883, 1996.
doi:10.1109/22.539946 Google Scholar
12. Mobashsher, A. T. and A. M. Abbosh, "Three-dimensional human head phantom with realistic electrical properties and anatomy," IEEE Antennas Wirel. Propag. Lett., Vol. 13, 1401-1404, 2014.
doi:10.1109/LAWP.2014.2340409 Google Scholar
13. Otterskog, M., N. Petrovic, and P. O. Risman, "A multi-layered head phantom for microwave investigations of brain hemorrhages," 2016 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-3, 2016. Google Scholar
14. Santorelli, A., O. Laforest, E. Porter, and M. Popovi, "Image classification for a time-domain microwave radar system: Experiments with stable modular breast phantoms," European Conference on Antennas and Propagation (EuCAP), 2015. Google Scholar
15. Gabriel, C., S. Gabriel, and E. Corthout, "The dielectric properties of biological tissues: I. Literature survey," Phys. Med. Biol., Vol. 41, No. 11, 2231-49, 1996.
doi:10.1088/0031-9155/41/11/001 Google Scholar
16. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, No. 11, 2271-93, 1996.
doi:10.1088/0031-9155/41/11/003 Google Scholar
17. Hasgall, P., F. DiGennaro, C. Baumgartner, E. Neufeld, M. Gosselin, D. Payne, A. Klingenbock, and N. Kuster, "IT’IS Database for thermal and electromagnetic parameters of biological tissues,", 2015, [Online], Available: www.itis.ethz.ch/database, [Accessed: 25-Nov-2016]. Google Scholar
18. Grozny "Thingiverse --- Human Head,", [Online], Available: http://www.thingiverse.com/thing: 172348, [Accessed: 15-Feb-2017]. Google Scholar
19. Dilmen, N., "NIH 3D print exchange --- Brain MRI,", [Online], Available: https://3dprint.nih.gov/discover/3DPX-002739, [Accessed: 15-Feb-2017]. Google Scholar
20. Foster, K. R., J. L. Schepps, R. D. Stoy, and H. P. Schwan, "Dielectric properties of brain tissue between 0.01 and 10 GHz," Phys. Med. Biol., Vol. 24, No. 6, 1177-1187, 1979.
doi:10.1088/0031-9155/24/6/008 Google Scholar
21. Schmid, G., G. Neubauer, and P. R. Mazal, "Dielectric properties of human brain tissue measured less than 10 h postmortem at frequencies from 800 to 2450 MHz," Bioelectromagnetics, Vol. 24, No. 6, 423-430, 2003.
doi:10.1002/bem.10123 Google Scholar
22. Gabriel, C. and A. Peyman, "Dielectric measurement: Error analysis and assessment of uncertainty," Phys. Med. Biol., Vol. 51, No. 23, 6033-6046, 2006.
doi:10.1088/0031-9155/51/23/006 Google Scholar
23. Pethig, R., "Dielectric properties of body tissues," Clin. Phys. Physiol. Meas., Vol. 8, No. Suppl A, 5-12, 1987.
doi:10.1088/0143-0815/8/4A/002 Google Scholar
24. Hyttinen, J., P. Kauppinen, T. Koobi, and J. Malmivuo, "Importance of the tissue conductivity values in modelling the thorax as a volume conductor," 19th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., Vol. 19, No. C, 2082-2085, 1997. Google Scholar
25. Gabriel, C., "Dielectric properties of biological tissue: Variation with age," Bioelectromagnetics, Vol. 26, No. SuppL. 7, 12-18, 2005.
doi:10.1002/bem.20147 Google Scholar
26. Luders, E., H. Steinmetz, and L. Jancke, "Brain size and grey matter volume in the healthy human brain," Neuroreport, Vol. 13, No. 17, 2371-4, 2002.
doi:10.1097/00001756-200212030-00040 Google Scholar
27. Makris, N., L. Angelone, S. Tulloch, S. Sorg, J. Kaiser, D. Kennedy, and G. Bonmassar, Absorption Rate Mapping, Vol. 46, No. 12, 1239-1251, 2010.
28. Kim, D.-Y., R. Jung, H.-S. Kim, and H.-J. Jin, "Electrically conductive polymeric nanocomposites prepared in alcohol dispersion of multiwalled carbon nanotubes," Mol. Cryst. Liq. Cryst., Vol. 491, No. 1, 255-263, Sep. 2008.
doi:10.1080/15421400802330853 Google Scholar
29. Stokes, M. G., C. D. Chambers, I. C. Gould, T. R. Henderson, N. E. Janko, N. B. Allen, J. B. Mattingley, A. T. Barker, M. Dervinis, F. Verbruggen, L. Maizey, R. C. Adams, R. Henderson, and B. Jason, "Simple metric for scaling motor threshold based on scalp-cortex distance: Application to studies using transcranial magnetic stimulation simple metric for scaling motor threshold based on scalp-cortex distance: Application to studies using transcranial," J. Neurophysiol., Vol. 94, No. 6, 4520-7, 2005.
doi:10.1152/jn.00067.2005 Google Scholar
30. Standring, S., Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 40th Ed., Elsevier, 2009.
31. Sims, J. R., L. R. Gharai, P. W. Schaefer, M. Vangel, E. S. Rosenthal, M. H. Lev, and L. H. Schwamm, "ABC/2 for rapid clinical estimate of infarct, perfusion, and mismatch volumes," Neurology, Vol. 72, No. 24, 2104-2110, 2009.
doi:10.1212/WNL.0b013e3181aa5329 Google Scholar
32. Mobashsher, A. T., K. S. Bialkowski, A. M. Abbosh, and S. Crozier, "Design and experimental evaluation of a non-invasive microwave head imaging system for intracranial haemorrhage detection," PLoS One, Vol. 11, No. 4, Apr. 2016.
doi:10.1371/journal.pone.0152351 Google Scholar
33. Curry, R. A. and B. B. Tempkin, Sonography --- E-Book: Introduction to Normal Structure and Function, 3rd Ed., Saunders, 2014.