Vol. 90
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2020-12-26
The Magnetic Field Produced from a Conical Current Sheet and from a Thin and Tightly-Wound Conical Coil
By
Progress In Electromagnetics Research B, Vol. 90, 1-20, 2021
Abstract
Mathematical expressions for the components of the magnetic field produced by a conically-shaped current sheet and by a tightly-wound conical coil are presented. The conical current sheet forms the frustum of a cone. In the limit as the top radius of the frustum approaches the bottom radius, a cylindrical current sheet is formed. Mathematical expressions for the magnetic field produced by a cylindrical current sheet are then compared to known and published results.
Citation
Matthew Smith, Nikiforos Fokas, Kevin Hart, Slobodan Babic, and Jerry P. Selvaggi, "The Magnetic Field Produced from a Conical Current Sheet and from a Thin and Tightly-Wound Conical Coil," Progress In Electromagnetics Research B, Vol. 90, 1-20, 2021.
doi:10.2528/PIERB20091806
References

1. Snow, C., "Magnetic fields of cylindrical coils and annular coils," Natl. Bur. Stand., Appl. Math. Ser., Vol. 38, 1-29, Dec. 1953.

2. Snow, C., "Formula for the inductance of a helix made with wire of any section," Sci. Pap. Bur. Stand., Vol. 21, No. 537, 431-519, Feb. 1926.
doi:10.6028/nbsscipaper.212

3. Jackson, J. D., Classical Electrodynamics, 3rd Ed., 180-181, John Wiley and Sons, 1999.

4. Smythe, W. R., Static and Dynamic Electricity, 3rd Ed., 282-283, McGraw-Hill, 1968.

5. Wolfram Research Inc., , , Mathematica, Version 12.1, Champaign, IL, 100 Trade Center Drive, 61820-7237, USA, 2020.

6. Hart, S., K. Hart, and J. P. Selvaggi, "Analytical expressions for the magnetic field from axially magnetized and conically shaped permanent magnets," IEEE Trans. Magn., Vol. 56, No. 7, 1-9, Jul. 2020.
doi:10.1109/TMAG.2020.2992191

7. Flax, L. and E. Callaghan, Magnetic field from a finite thin cone by use of Legendre polynomials, 1-41, NASA TN D-2400, Lewis Researh Center, Cleveland, Ohio, USA, Aug. 1963.

8. Snow, C., "Formulas for computing capacitance and inductance," National Bureau of Standards Circular, Vol. 544, Sep. 1, 1954.

9. Snow, C., "Hypergeometric and legendre functions with applications to integral equations of potential theory," Nat. Bur. Stand. Appl. Math. Ser., Vol. 19, 228-252, May 1, 1952.

10. Cohl, H. S. and J. E. Tohline, "A compact cylindrical Green’s function expansion for the solution of potential problems," The Astrophysical Journal, Vol. 527, 86-101, Dec. 1999.
doi:10.1086/308062

11. Cohl, H. S., A. R. P. Rau, J. E. Tohline, D. A. Browne, J. E. Cazes, and E. I. Barnes, "Useful alternative to the multipole expansion of 1/r potentials," Phys. Rev. A, Vol. 64, 052509-5, Oct. 2001.

12. Cohl, H. S., J. E. Tohline, and A. R. P. Rau, "Developments in determining the gravitational potential using toroidal functions," Astron. Nachr., Vol. 321, 363-372, Nov. 2000.

13. Selvaggi, J. P., Multipole analysis of circular cylindrical magnetic systems, Ph.D. dissertation, Rensselaer Polytech. Inst., Troy, NY, USA, 2005.

14. Selvaggi, J., S. Salon, O. Kwon, and M. V. K. Chari, "Calculating the external magnetic field from permanent magnets in permanent-magnet motors-an alternative method," IEEE Trans., Vol. 40, No. 5, 3278-3285, Sep. 2004.

15. Selvaggi, J. P., S. Salon, and M. V. K. Chari, "An application of toroidal functions in electrostatics," Am. J. Phys., Vol. 75, No. 8, 724-727, Apr. 2007.
doi:10.1119/1.2737473

16. Selvaggi, J. P., S. Salon, O. Kwon, and M. V. K. Chari, "Computation of the three-dimensional magnetic field from solid permanent-magnet bipolar cylinders employing toroidal harmonics," IEEE Trans. Magn., Vol. 43, No. 10, 3833-3839, Oct. 2007.
doi:10.1109/TMAG.2007.902995

17. Selvaggi, J. P., S. Salon, and M. V. K. Chari, "Computing the magnetic induction field due to a radially-magnetized finite cylindrical permanent magnet by employing toroidal harmonics," PIERS Proceedings, 244-251, Cambridge, USA, Jul. 5–8, 2010.

18. Selvaggi, J. P., S. Salon, and M. V. K. Chari, "Employing toroidal harmonics for computing the magnetic field from axially magnetized multipole cylinders," IEEE Trans. Magn., Vol. 46, No. 10, 3715-3723, Oct. 2010.
doi:10.1109/TMAG.2010.2051558

19. Selvaggi, J. P., S. Salon, O. Kwon, and M. V. K. Chari, "Calculating the external magnetic field from permanent magnets in permanent-magnet motors — An alternative method," IEEE Trans. Magn., Vol. 40, No. 5, 3278-3285, Sep. 2004.
doi:10.1109/TMAG.2004.831653

20. Selvaggi, J. P., S. Salon, O. Kwon, and M. V. K. Chari, "Computation of the three-dimensional magnetic field from solid permanent-magnet bipolar cylinders employing toroidal harmonics," IEEE Trans. Magn., Vol. 43, No. 10, 3833-3839, Oct. 2007.
doi:10.1109/TMAG.2007.902995

21. Whittaker, E. T. and G. N. Watson, A Course of Modern Analysis, 4th Ed., 281-301, Cambridge at University Press, 1952.

22. Wang, Z. X. and D. R. Guo, Special Functions, 135-209, World Scientific, 1989.
doi:10.1142/9789812779366_0004

23. Hanson, M. T. and I. W. Puja, "The evaluation of certain infinite integrals involving products of Bessel functions: A Correlation of formula," Quart. Appl. Math., Vol. 55, No. 3, 505-524, Sep. 1997.
doi:10.1090/qam/1466145

24. Colavecchia, F. D., G. Gasaneo, and J. E. Miraglia, "Numerical evaluation of Appell’s F1 hypergeometric function," Comp. Phys Comm., Vol. 138, 29-43, Mar. 2001.
doi:10.1016/S0010-4655(01)00186-2

25. Bailey, W. N., Appell’s Hypergeometric Functions of Two Variables, Ch. 9 in Generalised Hypergeometric Series, 73-83 and 99–101, Cambridge University Press, 1935.

26. Byrd, P. F. and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, 1954.
doi:10.1007/978-3-642-52803-3

27. Callaghan, E. E. and S. H. Maslen, The magnetic field from a finite solenoid, 1-23, NASA TN D-465, Lewis Researh Center, Cleveland, Ohio, USA, Oct. 1960.

28. Slater, L. J., Generalized Hypergeometric Functions, Cambridge Univ. Press, 1966.

29. Conway, J. T., "Exact solutions for the magnetic fields of axisymmetric solenoids and current distributions," IEEE Trans. Magn., Vol. 37, No. 4, 2977-2988, Jul. 2001.
doi:10.1109/20.947050

30. Brown, G. V. and L. Flax, Superposition calculation of thick solenoid fields from semi-infinite solenoid tables, 1-23, NASA TN D-2494, Lewis Research Center, Cleveland, Ohio, USA, Sep. 1964.

31. Conway, J. T., "Exact solutions for the mutual inductance of circular coils and elliptic coils," IEEE Trans. Magn., Vol. 48, No. 1, 81-94, Jan. 2012.
doi:10.1109/TMAG.2011.2161768

32. Conway, J. T., "Analytical solutions for the Newtonian gravitational field induced by matter within axisymmetric boundaries," Mon. Not. R. Astron. Soc., Vol. 316, 540-554, Feb. 2000.
doi:10.1046/j.1365-8711.2000.03523.x

33. Conway, J. T., "Inductance calculations for circular coils of rectangular cross section and parallel axes using bessel and struve functions," IEEE Trans. Magn., Vol. 46, No. 1, 75-81, Jan. 2010.
doi:10.1109/TMAG.2009.2026574

34. Conway, J. T., "Exact solutions for the mutual inductance of circular coils and elliptic coils," IEEE Trans. Magn., Vol. 48, No. 1, 81-94, Jan. 2012.
doi:10.1109/TMAG.2011.2161768

35. Conway, J. T., "Inductance calculations for noncoaxial coils using bessel functions," IEEE Trans. Magn., Vol. 43, No. 3, 1023-1034, Mar. 2007.
doi:10.1109/TMAG.2006.888565

36. Conway, J. T., "Noncoaxial inductance calculations without the vector potential for axisymmetric coils and planar coils," IEEE Trans. Magn., Vol. 44, No. 4, 453-462, Apr. 2008.
doi:10.1109/TMAG.2008.917128

37. Conway, J. T., "Non coaxial force and inductance calculations for bitter coils and coils with uniform radial current distributions," 2011 International Conference on Applied Superconductivity and Electromagnetic Devices, 61-64, Sydney, NSW, 2011.
doi:10.1109/ASEMD.2011.6145068

38. Babic, S., C. Akyel, J. Martinez, and B. Babic, "A new formula for calculating the magnetic force between two coaxial thick circular coils with rectangular cross-section," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 9, 1181-1193, 2015.
doi:10.1080/09205071.2015.1035807

39. Babic, S. and C. Akyel, "New formulas for mutual inductance and axial magnetic force between magnetically coupled coils: Thick circular coil of the rectangular cross-section-thin disk coil (pancake)," IEEE Trans. Magn., Vol. 49, No. 2, 860-868, Feb. 2013.
doi:10.1109/TMAG.2012.2212909

40. Babic, S. I. and C. Akyel, "Calculating mutual inductance between circular coils with inclined axes in air," IEEE Trans. Magn., Vol. 44, No. 7, 1743-1750, Jul. 2008.
doi:10.1109/TMAG.2008.920251

41. Babic, S., F. Sirois, C. Akyel, G. Lemarquand, V. Lemarquand, and R. Ravaud, "New formulas for mutual inductance and axial magnetic force between a thin wall solenoid and a thick circular coil of rectangular cross-section," IEEE Trans. Magn., Vol. 47, No. 8, 2034-2044, Aug. 2011.
doi:10.1109/TMAG.2011.2125796

42. Babic, S., F. Sirois, C. Akyel, G. Lemarquand, V. Lemarquand, and R. Ravaud, "Correction to “New formulas for mutual inductance and axial magnetic force between a thin wall solenoid and a thick circular coil of rectangular cross-section," IEEE Trans. Magn., Vol. 48, No. 6, 2096-2096, Jun. 2012.
doi:10.1109/TMAG.2011.2180733

43. Ravaud, R., G. Lemarquand, S. Babic, V. Lemarquand, and C. Akyel, "Cylindrical magnets and coils: Fields, forces, and inductances," IEEE Trans. Magn., Vol. 46, No. 9, 3585-3590, Sep. 2010.
doi:10.1109/TMAG.2010.2049026

44. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, Aug. 2008.
doi:10.1109/TMAG.2008.923096

45. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Magnetic field created by tile permanent magnets," IEEE Trans. Magn., Vol. 45, No. 7, 2920-2926, Jul. 2009.
doi:10.1109/TMAG.2009.2014752

46. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, Jul. 2009.
doi:10.1109/TMAG.2009.2016088

47. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 2: Radial magnetization," IEEE Trans. Magn., Vol. 45, No. 9, 3334-3342, Sep. 2009.
doi:10.1109/TMAG.2009.2025315

48. Babic, S., C. Akyel, M. M. Gavrilovic, and K. Wu, "New closed-form expressions for calculating the magnetic field of thin conductors with azimuthal current direction," 4th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services. TELSIKS’99 (Cat. No.99EX365), Vol. 1, 44-47, Nis, Yugoslavia, 1999.

49. Stoll, J. C., P. L. Yohner, and J. C. Laurence, Magnetic fields due to solid and hollow conical conductors, 1-131, NASA SP-3022, Lewis Research Center, Cleveland, Ohio, USA, Aug. 1965.