1. Snow, C., "Magnetic fields of cylindrical coils and annular coils," Natl. Bur. Stand., Appl. Math. Ser., Vol. 38, 1-29, Dec. 1953. Google Scholar
2. Snow, C., "Formula for the inductance of a helix made with wire of any section," Sci. Pap. Bur. Stand., Vol. 21, No. 537, 431-519, Feb. 1926.
doi:10.6028/nbsscipaper.212 Google Scholar
3. Jackson, J. D., Classical Electrodynamics, 3rd Ed., 180-181, John Wiley and Sons, 1999.
4. Smythe, W. R., Static and Dynamic Electricity, 3rd Ed., 282-283, McGraw-Hill, 1968.
5. Wolfram Research Inc., , , Mathematica, Version 12.1, Champaign, IL, 100 Trade Center Drive, 61820-7237, USA, 2020.
6. Hart, S., K. Hart, and J. P. Selvaggi, "Analytical expressions for the magnetic field from axially magnetized and conically shaped permanent magnets," IEEE Trans. Magn., Vol. 56, No. 7, 1-9, Jul. 2020.
doi:10.1109/TMAG.2020.2992191 Google Scholar
7. Flax, L. and E. Callaghan, Magnetic field from a finite thin cone by use of Legendre polynomials, 1-41, NASA TN D-2400, Lewis Researh Center, Cleveland, Ohio, USA, Aug. 1963.
8. Snow, C., "Formulas for computing capacitance and inductance," National Bureau of Standards Circular, Vol. 544, Sep. 1, 1954. Google Scholar
9. Snow, C., "Hypergeometric and legendre functions with applications to integral equations of potential theory," Nat. Bur. Stand. Appl. Math. Ser., Vol. 19, 228-252, May 1, 1952. Google Scholar
10. Cohl, H. S. and J. E. Tohline, "A compact cylindrical Green’s function expansion for the solution of potential problems," The Astrophysical Journal, Vol. 527, 86-101, Dec. 1999.
doi:10.1086/308062 Google Scholar
11. Cohl, H. S., A. R. P. Rau, J. E. Tohline, D. A. Browne, J. E. Cazes, and E. I. Barnes, "Useful alternative to the multipole expansion of 1/r potentials," Phys. Rev. A, Vol. 64, 052509-5, Oct. 2001. Google Scholar
12. Cohl, H. S., J. E. Tohline, and A. R. P. Rau, "Developments in determining the gravitational potential using toroidal functions," Astron. Nachr., Vol. 321, 363-372, Nov. 2000. Google Scholar
13. Selvaggi, J. P., Multipole analysis of circular cylindrical magnetic systems, Ph.D. dissertation, Rensselaer Polytech. Inst., Troy, NY, USA, 2005.
14. Selvaggi, J., S. Salon, O. Kwon, and M. V. K. Chari, "Calculating the external magnetic field from permanent magnets in permanent-magnet motors-an alternative method," IEEE Trans., Vol. 40, No. 5, 3278-3285, Sep. 2004. Google Scholar
15. Selvaggi, J. P., S. Salon, and M. V. K. Chari, "An application of toroidal functions in electrostatics," Am. J. Phys., Vol. 75, No. 8, 724-727, Apr. 2007.
doi:10.1119/1.2737473 Google Scholar
16. Selvaggi, J. P., S. Salon, O. Kwon, and M. V. K. Chari, "Computation of the three-dimensional magnetic field from solid permanent-magnet bipolar cylinders employing toroidal harmonics," IEEE Trans. Magn., Vol. 43, No. 10, 3833-3839, Oct. 2007.
doi:10.1109/TMAG.2007.902995 Google Scholar
17. Selvaggi, J. P., S. Salon, and M. V. K. Chari, "Computing the magnetic induction field due to a radially-magnetized finite cylindrical permanent magnet by employing toroidal harmonics," PIERS Proceedings, 244-251, Cambridge, USA, Jul. 5–8, 2010. Google Scholar
18. Selvaggi, J. P., S. Salon, and M. V. K. Chari, "Employing toroidal harmonics for computing the magnetic field from axially magnetized multipole cylinders," IEEE Trans. Magn., Vol. 46, No. 10, 3715-3723, Oct. 2010.
doi:10.1109/TMAG.2010.2051558 Google Scholar
19. Selvaggi, J. P., S. Salon, O. Kwon, and M. V. K. Chari, "Calculating the external magnetic field from permanent magnets in permanent-magnet motors — An alternative method," IEEE Trans. Magn., Vol. 40, No. 5, 3278-3285, Sep. 2004.
doi:10.1109/TMAG.2004.831653 Google Scholar
20. Selvaggi, J. P., S. Salon, O. Kwon, and M. V. K. Chari, "Computation of the three-dimensional magnetic field from solid permanent-magnet bipolar cylinders employing toroidal harmonics," IEEE Trans. Magn., Vol. 43, No. 10, 3833-3839, Oct. 2007.
doi:10.1109/TMAG.2007.902995 Google Scholar
21. Whittaker, E. T. and G. N. Watson, A Course of Modern Analysis, 4th Ed., 281-301, Cambridge at University Press, 1952.
22. Wang, Z. X. and D. R. Guo, Special Functions, 135-209, World Scientific, 1989.
doi:10.1142/9789812779366_0004
23. Hanson, M. T. and I. W. Puja, "The evaluation of certain infinite integrals involving products of Bessel functions: A Correlation of formula," Quart. Appl. Math., Vol. 55, No. 3, 505-524, Sep. 1997.
doi:10.1090/qam/1466145 Google Scholar
24. Colavecchia, F. D., G. Gasaneo, and J. E. Miraglia, "Numerical evaluation of Appell’s F1 hypergeometric function," Comp. Phys Comm., Vol. 138, 29-43, Mar. 2001.
doi:10.1016/S0010-4655(01)00186-2 Google Scholar
25. Bailey, W. N., Appell’s Hypergeometric Functions of Two Variables, Ch. 9 in Generalised Hypergeometric Series, 73-83 and 99–101, Cambridge University Press, 1935.
26. Byrd, P. F. and M. D. Friedman, Handbook of Elliptic Integrals for Engineers and Physicists, Springer-Verlag, 1954.
doi:10.1007/978-3-642-52803-3
27. Callaghan, E. E. and S. H. Maslen, The magnetic field from a finite solenoid, 1-23, NASA TN D-465, Lewis Researh Center, Cleveland, Ohio, USA, Oct. 1960.
28. Slater, L. J., Generalized Hypergeometric Functions, Cambridge Univ. Press, 1966.
29. Conway, J. T., "Exact solutions for the magnetic fields of axisymmetric solenoids and current distributions," IEEE Trans. Magn., Vol. 37, No. 4, 2977-2988, Jul. 2001.
doi:10.1109/20.947050 Google Scholar
30. Brown, G. V. and L. Flax, Superposition calculation of thick solenoid fields from semi-infinite solenoid tables, 1-23, NASA TN D-2494, Lewis Research Center, Cleveland, Ohio, USA, Sep. 1964.
31. Conway, J. T., "Exact solutions for the mutual inductance of circular coils and elliptic coils," IEEE Trans. Magn., Vol. 48, No. 1, 81-94, Jan. 2012.
doi:10.1109/TMAG.2011.2161768 Google Scholar
32. Conway, J. T., "Analytical solutions for the Newtonian gravitational field induced by matter within axisymmetric boundaries," Mon. Not. R. Astron. Soc., Vol. 316, 540-554, Feb. 2000.
doi:10.1046/j.1365-8711.2000.03523.x Google Scholar
33. Conway, J. T., "Inductance calculations for circular coils of rectangular cross section and parallel axes using bessel and struve functions," IEEE Trans. Magn., Vol. 46, No. 1, 75-81, Jan. 2010.
doi:10.1109/TMAG.2009.2026574 Google Scholar
34. Conway, J. T., "Exact solutions for the mutual inductance of circular coils and elliptic coils," IEEE Trans. Magn., Vol. 48, No. 1, 81-94, Jan. 2012.
doi:10.1109/TMAG.2011.2161768 Google Scholar
35. Conway, J. T., "Inductance calculations for noncoaxial coils using bessel functions," IEEE Trans. Magn., Vol. 43, No. 3, 1023-1034, Mar. 2007.
doi:10.1109/TMAG.2006.888565 Google Scholar
36. Conway, J. T., "Noncoaxial inductance calculations without the vector potential for axisymmetric coils and planar coils," IEEE Trans. Magn., Vol. 44, No. 4, 453-462, Apr. 2008.
doi:10.1109/TMAG.2008.917128 Google Scholar
37. Conway, J. T., "Non coaxial force and inductance calculations for bitter coils and coils with uniform radial current distributions," 2011 International Conference on Applied Superconductivity and Electromagnetic Devices, 61-64, Sydney, NSW, 2011.
doi:10.1109/ASEMD.2011.6145068 Google Scholar
38. Babic, S., C. Akyel, J. Martinez, and B. Babic, "A new formula for calculating the magnetic force between two coaxial thick circular coils with rectangular cross-section," Journal of Electromagnetic Waves and Applications, Vol. 29, No. 9, 1181-1193, 2015.
doi:10.1080/09205071.2015.1035807 Google Scholar
39. Babic, S. and C. Akyel, "New formulas for mutual inductance and axial magnetic force between magnetically coupled coils: Thick circular coil of the rectangular cross-section-thin disk coil (pancake)," IEEE Trans. Magn., Vol. 49, No. 2, 860-868, Feb. 2013.
doi:10.1109/TMAG.2012.2212909 Google Scholar
40. Babic, S. I. and C. Akyel, "Calculating mutual inductance between circular coils with inclined axes in air," IEEE Trans. Magn., Vol. 44, No. 7, 1743-1750, Jul. 2008.
doi:10.1109/TMAG.2008.920251 Google Scholar
41. Babic, S., F. Sirois, C. Akyel, G. Lemarquand, V. Lemarquand, and R. Ravaud, "New formulas for mutual inductance and axial magnetic force between a thin wall solenoid and a thick circular coil of rectangular cross-section," IEEE Trans. Magn., Vol. 47, No. 8, 2034-2044, Aug. 2011.
doi:10.1109/TMAG.2011.2125796 Google Scholar
42. Babic, S., F. Sirois, C. Akyel, G. Lemarquand, V. Lemarquand, and R. Ravaud, "Correction to “New formulas for mutual inductance and axial magnetic force between a thin wall solenoid and a thick circular coil of rectangular cross-section," IEEE Trans. Magn., Vol. 48, No. 6, 2096-2096, Jun. 2012.
doi:10.1109/TMAG.2011.2180733 Google Scholar
43. Ravaud, R., G. Lemarquand, S. Babic, V. Lemarquand, and C. Akyel, "Cylindrical magnets and coils: Fields, forces, and inductances," IEEE Trans. Magn., Vol. 46, No. 9, 3585-3590, Sep. 2010.
doi:10.1109/TMAG.2010.2049026 Google Scholar
44. Ravaud, R., G. Lemarquand, V. Lemarquand, and C. Depollier, "Analytical calculation of the magnetic field created by permanent-magnet rings," IEEE Trans. Magn., Vol. 44, No. 8, 1982-1989, Aug. 2008.
doi:10.1109/TMAG.2008.923096 Google Scholar
45. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Magnetic field created by tile permanent magnets," IEEE Trans. Magn., Vol. 45, No. 7, 2920-2926, Jul. 2009.
doi:10.1109/TMAG.2009.2014752 Google Scholar
46. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 1: Axial magnetization," IEEE Trans. Magn., Vol. 45, No. 7, 2996-3002, Jul. 2009.
doi:10.1109/TMAG.2009.2016088 Google Scholar
47. Ravaud, R., G. Lemarquand, and V. Lemarquand, "Force and stiffness of passive magnetic bearings using permanent magnets. Part 2: Radial magnetization," IEEE Trans. Magn., Vol. 45, No. 9, 3334-3342, Sep. 2009.
doi:10.1109/TMAG.2009.2025315 Google Scholar
48. Babic, S., C. Akyel, M. M. Gavrilovic, and K. Wu, "New closed-form expressions for calculating the magnetic field of thin conductors with azimuthal current direction," 4th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services. TELSIKS’99 (Cat. No.99EX365), Vol. 1, 44-47, Nis, Yugoslavia, 1999. Google Scholar
49. Stoll, J. C., P. L. Yohner, and J. C. Laurence, Magnetic fields due to solid and hollow conical conductors, 1-131, NASA SP-3022, Lewis Research Center, Cleveland, Ohio, USA, Aug. 1965.