Vol. 90
Latest Volume
All Volumes
PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
Radiation from a Dipole Antenna Located Outside a Cylindrical Density Depletion in a Magnetoplasma Under Resonance Scattering Conditions
Progress In Electromagnetics Research B, Vol. 90, 109-128, 2021
Resonance interaction between the electromagnetic radiation from a dipole antenna and a cylindrical density depletion aligned with an external static magnetic field in a magnetoplasma is studied in the case where the antenna is located outside such a density irregularity. A distinctive feature of the presented analysis is using a realistic distribution of the antenna current instead of the assumed one. It is shown that such an antenna can excite plasmon resonances of the density depletion, along with the resonance at the plasma frequency of the outer region. In addition, previously unrevealed resonances of the total field, which are related to excitation of complex modes of the cylindrical density depletion, are discussed. The results obtained can be helpful in understanding the basic properties of resonance interaction of the antenna fields with cylindrical density irregularities in a magnetoplasma and planning the related experiments in the ionospheric and laboratory plasmas.
Alexander V. Kudrin, Alexander V. Ivoninsky, and Oleg M. Ostafiychuk, "Radiation from a Dipole Antenna Located Outside a Cylindrical Density Depletion in a Magnetoplasma Under Resonance Scattering Conditions," Progress In Electromagnetics Research B, Vol. 90, 109-128, 2021.

1. Fialer, P. A., "Field-aligned scattering from a heated region of the ionosphere — Observations at HF and VHF," Radio Sci., Vol. 9, No. 11, 923-940, 1974.

2. Stenzel, R. L., "Filamentation instability of a large amplitude whistler wave," Phys. Fluids, Vol. 19, No. 6, 865-871, 1976.

3. Sugai, H., M. Maruyama, M. Sato, and S. Takeda, "Whistler wave ducting caused by antenna actions," Phys. Fluids, Vol. 21, No. 4, 690-694, 1978.

4. Vdovichenko, I. A., G. A. Markov, V. A. Mironov, and A. M. Sergeev, "Ionizational self-ducting of whistlers in a plasma," JETP Lett., Vol. 44, No. 5, 275-279, 1986.

5. Stenzel, R. L., "Whistler waves in space and laboratory plasmas," J. Geophys. Res., Vol. 104, No. A7, 14379-14395, 1999.

6. Bell, T. F. and H. D. Ngo, "Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities," J. Geophys. Res., Vol. 95, No. A1, 149-172, 1990.

7. Bamber, J. F., W. Gekelman, and J. E. Maggs, "Whistler wave mode conversion to lower hybrid waves at a density striation," Phys. Rev. Lett., Vol. 73, No. 22, 2990-2993, 1994.

8. Calvert, W., "Wave ducting in different wave modes," J. Geophys. Res., Vol. 100, No. A9, 17491-17497, 1995.

9. Streltsov, A. V., M. Lampe, W. Manheimer, G. Ganguli, and G. Joyce, "Whistler propagation in inhomogeneous plasma," J. Geophys. Res., Vol. 111, No. A3, A03216, 2006.

10. Streltsov, A. V., J. Woodroffe, W. Gekelman, and P. Pribyl, "Modeling the propagation of whistler-mode waves in the presence of field-aligned density irregularities," Phys. Plasmas, Vol. 19, No. 5, 052104, 2012.

11. Woodroffe, J. R., A. V. Streltsov, A. Vartanyan, and G. M. Milikh, "Whistler propagation in ionospheric density ducts: Simulations and DEMETER observations," J. Geophys. Res., Vol. 118, No. 11, 7011-7018, 2013.

12. Woodroffe, J. R. and A. V. Streltsov, "Whistler interaction with field-aligned density irregularities in the ionosphere: Refraction, diffraction, and interference," J. Geophys. Res., Vol. 119, No. 7, 5790-5799, 2014.

13. Hall, J. O. and T. B. Leyser, "Conversion of trapped upper hybrid oscillations and Z mode at a plasma density irregularity," Phys. Plasmas, Vol. 10, No. 6, 2509-2518, 2003.

14. Hall, J. O., Ya. N. Istomin, and T. B. Leyser, "Electromagnetic coupling of localized upper hybrid oscillations in a system of density depletions," Phys. Plasmas, Vol. 16, No. 1, 012902, 2009.

15. Eliasson, B. and T. B. Leyser, "Numerical study of upper hybrid to Z-mode leakage during electromagnetic pumping of groups of striations in the ionosphere," Ann. Geophys., Vol. 33, No. 8, 1019-1030, 2015.

16. Starodubtsev, M. V., V. V. Nazarov, M. E. Gushchin, and A. V. Kostrov, "Laboratory modeling of ionospheric heating experiments," J. Geophys. Res., Vol. 121, No. 10, 10481-10495, 2016.

17. Starodubtsev, M., S. Korobkov, M. Gushchin, S. Grach, and V. Nazarov, "Ducting of upper-hybrid waves by density depletions in a magnetoplasma with weak spatial dispersion," Phys. Plasmas, Vol. 26, No. 7, 072902, 2019.

18. Benson, R. F., P. A. Webb, J. L. Green, D. L. Carpenter, V. S. Sonwalkar, H. G. James, and B. W. Reinisch, "Active wave experiments in space plasmas: The Z mode," Lect. Notes Phys., Vol. 687, 3-35, 2006.

19. Kondrat’ev, I. G., A. V. Kudrin, and T. M. Zaboronkova, Electrodynamics of Density Ducts in Magnetized Plasmas, Gordon and Breach, Amsterdam, 1999.

20. Streltsov, A. V., J.-J. Berthelier, A. A. Chernyshov, V. L. Frolov, F. Honary, M. J. Kosch, R. P. McCoy, E. V. Mishin, and M. T. Rietveld, "Past, present and future of active radio frequency experiments in space," Space Sci. Rev., Vol. 214, 118, 2018.

21. Vandenplas, P. E., Electron Waves and Resonances in Bounded Plasmas, Interscience Publishers, London, 1968.

22. Krall, N. A. and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York, 1973.

23. Bryant, G. H. and R. N. Franklin, "The scattering of a plane wave by a bounded plasma," Proc. Phys. Soc., Vol. 81, No. 3, 531-543, 1963.

24. Parker, J. V., J. C. Nickel, and R. W. Gould, "Resonance oscillations in a hot nonuniform plasma," Phys. Fluids, Vol. 7, No. 9, 1489-1500, 1964.

25. Crawford, F. W., "Internal resonances of a discharge column," J. Appl. Phys., Vol. 35, No. 5, 1365-1369, 1964.

26. Messiaen, A. M. and P. E. Vandenplas, "Resonant behaviour of a cylindrical column of plasma in free space with and without steady magnetic fields," Physica, Vol. 28, No. 6, 537-552, 1962.

27. Crawford, F. W., G. S. Kino, and A. B. Cannara, "Dipole resonances of a plasma in a magnetic field," J. Appl. Phys., Vol. 34, No. 11, 3168-3175, 1963.

28. Schmitt, H. J., G. Meltz, and P. J. Freyheit, "Gyrotropic resonances in afterglow plasmas," Phys. Rev., Vol. 139, No. 5A, A1432-A1440, 1965.

29. Seshadri, S. R., "Plane-wave scattering by a magnetoplasma cylinder," Electron. Lett., Vol. 1, No. 9, 256-258, 1965.

30. Vandenplas, P. E. and A. M. Messiaen, "Scattering of electromagnetic waves by a cylindrical plasma in a steady magnetic field: I. Anisotropy effects," Nucl. Fusion, Vol. 5, No. 1, 47-55, 1965.

31. Buchsbaum, S. J. and A. Hasegawa, "Excitation of longitudinal plasma oscillations near electron cyclotron harmonics," Phys. Rev. Lett., Vol. 12, No. 25, 685-688, 1964.

32. Buchsbaum, S. J. and A. Hasegawa, "Longitudinal plasma oscillations near electron cyclotron harmonics," Phys. Rev., Vol. 143, No. 1, 303-309, 1966.

33. Es’kin, V. A., A. V. Ivoninsky, and A. V. Kudrin, "Scattering of an obliquely incident plane electromagnetic wave by a magnetized plasma column: Energy flow patterns at plasmon resonances," Progress In Electromagnetics Research B, Vol. 63, 173-186, 2015.

34. Es’kin, V. A., A. V. Ivoninsky, A. V. Kudrin, and C. Krafft, "Poynting vector behaviour during the resonance scattering of a plane electromagnetic wave by a gyrotropic cylinder," Phys. Scr., Vol. 91, No. 1, 015502, 2016.

35. Es’kin, V. A., A. V. Ivoninsky, A. V. Kudrin, and L. L. Popova, "Electromagnetic radiation from filamentary sources in the presence of axially magnetized cylindrical plasma scatterers," J. Exp. Theor. Phys., Vol. 124, No. 2, 202-212, 2017.

36. Kelley, M. C., T. L. Arce, J. Salowey, M. Sulzer, W. T. Armstrong, M. Carter, and L. Duncan, "Density depletions at the 10-m scale induced by the Arecibo heater," J. Geophys. Res., Vol. 100, No. A9, 17367-17376, 1995.

37. Stubbe, P., "Review of ionospheric modification experiments at Tromsø," J. Atmos. Terr. Phys., Vol. 58, No. 1–4, 349-368, 1996.

38. Frolov, V. L., L. M. Erukhimov, S. A. Metelev, and E. N. Sergeev, "Temporal behaviour of artificial small-scale ionospheric irregularities: Review of experimental results," J. Atmos. Sol. Terr. Phys., Vol. 59, No. 18, 2317-2333, 1997.

39. Tereshchenko, E. D., B. Z. Khudukon, A. V. Gurevich, K. P. Zybin, V. L. Frolov, E. N. Myasnikov, N. V. Muravieva, and H. C. Carlson, "Radio tomography and scintillation studies of ionospheric electron density modification caused by a powerful HF-wave and magnetic zenith effect at mid-latitudes," Phys. Lett. A, Vol. 325, No. 5–6, 381-388, 2004.

40. Gurevich, A. V., "Nonlinear effects in the ionosphere," Phys. Usp., Vol. 50, No. 11, 1091-1121, 2007.

41. Blagoveshchenskaya, N. F., T. D. Borisova, T. K. Yeoman, M. T. Rietveld, I. M. Ivanova, and L. J. Baddeley, "Artificial small-scale field-aligned irregularities in the high latitude F region of the ionosphere induced by an X-mode HF heater wave," Geophys. Res. Lett., Vol. 38, No. 8, L08802, 2011.

42. Vartanyan, A., G. M. Milikh, E. Mishin, M. Parrot, I. Galkin, B. Reinisch, J. Huba, G. Joyce, and K. Papadopoulos, "Artificial ducts caused by HF heating of the ionosphere by HAARP," J. Geophys. Res., Vol. 117, No. A11, A10307, 2012.

43. Najmi, A., G. Milikh, J. Secan, K. Chiang, M. Psiaki, P. Bernhardt, S. Briczinski, C. Siefring, C. L. Chang, and K. Papadopoulos, "Generation and detection of super small striations by F region HF heating," J. Geophys. Res., Vol. 119, No. 7, 6000-6011, 2014.

44. Grach, S. M., E. N. Sergeev, E. V. Mishin, and A. V. Shindin, "Dynamic properties of ionospheric plasma turbulence driven by high-power high-frequency radiowaves," Phys. Usp., Vol. 59, No. 11, 1091-1128, 2016.

45. Zaboronkova, T. M., A. V. Kostrov, A. V. Kudrin, A. V. Tikhonov, S. V. Tronin, and A. A. Shaikin, "Channeling of waves in the whistler frequency range within nonuniform plasma structures," Sov. Phys. JETP, Vol. 75, No. 4, 625-632, 1992.

46. Kostrov, A. V., A. V. Kudrin, L. E.Kurina, G. A. Luchinin, A. A. Shaykin, and T. M. Zaboronkova, "Whistlers in thermally generated ducts with enhanced plasma density: Excitation and propagation," Phys. Scr., Vol. 62, No. 1, 51-65, 2000.

47. Nazarov, V. V., M. V. Starodubtsev, and A. V. Kostrov, "Nonlinear trapping and self-guiding of magnetized Langmuir waves due to thermal plasma filamentation," Phys. Plasmas, Vol. 14, No. 12, 122106, 2007.

48. Aidakina, N., M. Gushchin, I. Zudin, S. Korobkov, and A. Strikovskiy, "Laboratory study of interaction of magnetoplasma irregularities produced by several radio-frequency heating sources," Phys. Plasmas, Vol. 25, No. 7, 072114, 2018.

49. Ivoninsky, A. V. and A. V. Kudrin, "Resonance scattering of an extraordinary wave by a cylindrical density depletion in a magnetoplasma," Phys. Plasmas, Vol. 25, No. 10, 102112, 2018.

50. Arnush, D., "The role of Trivelpiece-Gould waves in antenna coupling to helicon waves," Phys. Plasmas, Vol. 7, No. 7, 3042-3050, 2000.

51. Carter, M. D., F. W. Baity, G. C. Barber, R. H. Goulding, Y. Mori, D. O. Sparks, K. F. White, E. F. Jaeger, F. R. Chang-Dıaz, and J. P. Squire, "Comparing experiments with modeling for light ion helicon plasma sources," Phys. Plasmas, Vol. 9, No. 12, 5097-5110, 2002.

52. Chen, F. F., "Helicon discharges and sources: A review," Plasma Sources Sci. Technol., Vol. 24, No. 1, 014001, 2015.

53. Zaboronkova, T. M., A. V. Kudrin, and M. Yu. Lyakh, "Excitation of nonsymmetric waves by given sources in a magnetoplasma in the presence of a cylindrical plasma channel," Radiophys. Quantum Electron., Vol. 46, No. 5–6, 407-424, 2003.

54. Kudrin, A. V., P. V. Bakharev, C. Krafft, and T. M. Zaboronkova, "Whistler wave radiation from a loop antenna located in a cylindrical density depletion," Phys. Plasmas, Vol. 16, No. 6, 063502, 2009.

55. Pfannmoller, J. P., C. Lechte, O. Grulke, and T. Klinger, "Investigations on loop antenna excited whistler waves in a cylindrical plasma based on laboratory experiments and simulations," Phys. Plasmas, Vol. 19, No. 10, 102113, 2012.

56. Kudrin, A. V., N. M. Shkokova, O. E. Ferencz, and T. M. Zaboronkova, "Whistler wave radiation from a pulsed loop antenna located in a cylindrical duct with enhanced plasma density," Phys. Plasmas, Vol. 21, No. 11, 112115, 2014.

57. Kudrin, A. V., O. M. Ostafiychuk, and T. M. Zaboronkova, "Excitation of whistler waves below the lower hybrid frequency by a loop antenna located in an enhanced density duct," Phys. Plasmas, Vol. 24, No. 8, 082109, 2017.

58. Kondrat’ev, I. G., A. V. Kudrin, and T. M. Zaboronkova, "The use of near-antenna artificial density ducts for increasing the power of VLF radiation in space plasma," J. Atmos. Sol. Terr. Phys., Vol. 59, No. 18, 2475-2488, 1997.

59. Kudrin, A. V., M. Yu. Lyakh, and T. M. Zaboronkova, "Wave emission from an open-ended cylindrical channel in a cold magnetoplasma," IEEE Trans. Antennas Propag., Vol. 49, No. 12, 1645-1648, 2001.

60. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, Oxford, 1970.

61. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall, Englewood Cliffs, 1973.

62. Lee, S. W. and Y. T. Lo, "Current distribution and input admittance of an infinite cylindrical antenna in anisotropic plasma," IEEE Trans. Antennas Propag., Vol. 15, No. 2, 244-252, 1967.

63. Lee, S. W., "Cylindrical antenna in uniaxial resonant plasmas," Radio Sci., Vol. 4, No. 2, 179-189, 1969.

64. Chugunov, Yu. V., "The theory of a thin metal antenna in anisotropic media," Radiophys. Quantum Electron., Vol. 12, No. 6, 661-664, 1969.

65. Zaboronkova, T. M., A. V. Kudrin, and E. Yu. Petrov, "VLF current distribution on a cylindrical VLF antenna in a magnetoplasma," Radiophys. Quantum Electron., Vol. 42, No. 8, 660-673, 1999.

66. Kudrin, A. V., E. Yu. Petrov, G. A. Kyriacou, and T. M. Zaboronkova, "Insulated cylindrical antenna in a cold magnetoplasma," Progress In Electromagnetics Research, Vol. 53, 135-166, 2005.

67. Gradshteyn, I. S. and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York, 2007.

68. Tamir, T. and A. A. Oliner, "The spectrum of electromagnetic waves guided by a plasma layer," Proc. IEEE, Vol. 51, No. 2, 317-332, 1963.

69. Shevchenko, V. V., Continuous Transitions in Open Waveguides, Golem Press, Boulder, 1971.