Vol. 90
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-02-13
An Overview of Rainfall Fading Prediction Models for Satellite Links in Southern Africa
By
Progress In Electromagnetics Research B, Vol. 90, 187-205, 2021
Abstract
This work presents an overview of rainfall fading models over satellite links in South Africa using three years of rainfall data collected by the Joss-Waldvogel RD-80 disdrometer in Durban, South Africa (29˚52'S, 30˚58'E), alongside a colocated Ku-band satellite TV link. Different drop size distribution models, such as Lognormal, Gamma, Weibull, and the Optimised drop size distribution model for Equatorial Africa, are used to formulate the rainfall attenuation models used in this study. Thereafter, the formulated attenuation models are used to convert rainfall rate time series data to predicted rainfall attenuation time series. In addition, both the ITU-R model and the Synthetic Storm Techniques are applied for comparison with the above rainfall attenuation models alongside experimental measurements over the 12.6 GHz satellite TV link from Intelsat-20 (IS-20) located at 68.5˚E on the azimuth angle of 57.5˚ with respect to Durban.
Citation
Djuma Sumbiri, and Thomas Joachim Odhiambo Afullo, "An Overview of Rainfall Fading Prediction Models for Satellite Links in Southern Africa," Progress In Electromagnetics Research B, Vol. 90, 187-205, 2021.
doi:10.2528/PIERB20112407
References

1. Matricciani, E., "Time diversity as a rain attenuation countermeasure in satellite links in the 10-100 GHz frequency bands," 2006 First European Conference on Antennas and Propagation, 1-6, IEEE, 2006.

2. Nakajo, R. and Y. Maekawa, "Characteristics of rain attenuation time variation in Ka band satellite communications for the kind of rain types in each season," 2012 International Symposium on Antennas and Propagation (ISAP), 1473-1476, IEEE, 2012.

3. Afullo, T. J. O., "Raindrop size distribution modeling for radio link design along the eastern coast of South Africa," Progress In Electromagnetics Research B, Vol. 34, 345-366, 2011.
doi:10.2528/PIERB11082005

4. Akuon, P. O. and T. J. O. Afullo, "Rain cell sizing for the design of high capacity radio link systems in South Africa," Progress In Electromagnetics Research B, Vol. 35, 263-285, 2011.
doi:10.2528/PIERB11083002

5. Alonge, A. A. and T. J. O. Afullo, "Rainfall microstructural analysis for microwave link networks: Comparison at equatorial and subtropical Africa," Progress In Electromagnetics Research B, Vol. 59, 45-58, 2014.
doi:10.2528/PIERB14021103

6. Adetan, O. E. and T. J. Afullo, "Raindrop size distribution and rainfall attenuation modeling in equatorial subtropical Africa: Critical diameters," Annals des Telecommunication, 1-13, 10.1007/s12243-013-0418-z, 2014.

7. Sumbiri, D., T. J. O. Afullo, and A. A. Alonge, "Rainfall zoning and rain attenuation mapping for microwave and millimetric applications in central Africa," International Journal on Communications Antenna and Propagation (IRECAP), Vol. 6, No. 4, 198-210, 2016.
doi:10.15866/irecap.v6i4.9036

8. Afolayan, B. O., T. J. Afullo, and A. Alonge, "Subtropical rain attenuation statistics on 12.6 GHz ku-band satellite link using Synthetic Storm Technique," SAIEE Africa Research Journal, Vol. 109, No. 4, 230-236, December 2018.
doi:10.23919/SAIEE.2018.8538336

9. Ahuna, M. N., T. J. Afullo, and A. A. Alonge, "30-second and one-minute rainfall rate modelling and conversion for millimetric wave propagation in South Africa," SAIEE Africa Research Journal, Vol. 107, No. 4, 17-29, March 2016.
doi:10.23919/SAIEE.2016.8532248

10. Afolayan, B., T. Afullo, and A. Alonge, "Seasonal and annual analysis of slant path attenuation over a 12 GHz earth-satellite link in subtropical Africa," International Journal on Communications Antenna and Propagation (IRECAP), Vol. 7, No. 7, 572-580, 2017.
doi:10.15866/irecap.v7i7.12668

11. Ahuna, M. N., T. J. O. Afullo, and A. Alonge, "Outage prediction during intense rainstorm events using queuing theory and Markov Chains over radio links," Progress In Electromagnetics Research M, Vol. 73, 183-196, 2018.
doi:10.2528/PIERM18060205

12. Alonge, A. A., "Semi-empirical characteristics of modified lognormal DSD inputs using rain rate distributions for radio links over the African Continent," Advances in Space Research, Vol. 67, No. 1, 179-197, 2021.
doi:10.1016/j.asr.2020.09.017

13. Ajayi, G. O. and R. L. Olsen, "Modelling of a raindrop size distribution for microwave and millimetre wave applications," Radio Science, Vol. 20, No. 2, 193-202, 1985.
doi:10.1029/RS020i002p00193

14. Adimula, I. and G. Ajayi, "Variation in raindrop size distribution and specific attenuation due to rain in Nigeria," Ann. Telecom., Vol. 51, No. 1-2, 87-93, 1996.

15. Adetan, O. and T. J. Afullo, "Three-parameter raindrop size distribution modeling for microwave propagation in South Africa," Proceedings of the International Association of Science and Technology for Development (IASTED), International Conference on Modeling and Simulation (Africa MS 2012), 155-160, 2012.

16. Sekine, M. and G. Lind, "Rain attenuation of centimeter, millimeter and submillimeter radio waves," Proc. of 12th European Microwave Conference, 584-589, 1982.

17. Jiang, H., M. Sano, and M. Sekine, "Weibull raindrop-size distribution and its application to rain attenuation," IEE Proc. Microw. Antennas Propag., Vol. 144, No. 3, 197-200, June 1997.
doi:10.1049/ip-map:19971193

18. Sumbiri, D. and T. J. O. Afullo, "Optimized rain drop size distribution model for microwave propagation for equatorial Africa," SAIEE Africa Research Journal, Vol. 111, No. 1, 22-35, March 2020.
doi:10.23919/SAIEE.2020.9007882

19. ITU-R "Propagation data and prediction methods required for the design of Earth-space telecommunication systems," Recommendation ITU-R, 618-13, 2017.

20. ITU-R "Rain height model for prediction methods," Recommendation ITU-R, 839-4, 2013.

21. ITU-R "Specific attenuation model for rain for use in prediction methods," ITU-R P.838-3, Geneva, 1992-1999-2003-2005.

22. Freeman, R. L., Radio System Design for Telecommunications, John Wiley and Sons, 2007.
doi:10.1002/0470050446

23. Olsen, R. L., D. V. Rogers, and D. B. Hodge, "The aRb relation in the calculation of rain attenuation," IEEE Trans. Antennas & Propag., Vol. 26, No. 2, 318-329, March 1978.
doi:10.1109/TAP.1978.1141845

24. Drufuca, G., "Rain attenuation statistics for frequencies above 10-GHz from rain gauge observations," J. Res. Atmosphere, Vol. 8, No. 1, 2, 399-411, 1974.

25. Bertok, E., G. D. Renzis, and G. Drufuca, "Estimate of attenuation due to rain at 11-GHz from rain gauge data," URSI Commission F Open Symposium, 295-300, La Baule, 1997.

26. Matricciani, E., C. Riva, and L. Castanet, "Performance of the synthetic storm technique in a low elevation 5 slant path at 44.5 GHz in the French Pyrénées," Proc. First European Conference on Antennas and Propagation (EuCAP), 1-6, 2006.

27. Kourogiorgas, C. I., A. D. Panagopoulos, J. D. Kanellopoulos, S. N. Livieratos, and G. E. Chatzarakis, "Investigation of rain fade dynamic properties using simulated rain attenuation data with synthetic storm technique," Proc. 7th European Conference on Antennas and Propagation (EuCAP), 2277-2281, 2013.

28. Sánchez-Lago, I., F. Fontán, P. Mariño, and U.-C. Fiebig, "Validation of the synthetic storm technique as part of a time-series generator for satellite links," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 372-375, October 2007.

29. Lwas, A. K., Md. R. Islam, J. Chebil, M. H. Habaebi, A. F. Ismael, A. Zyoud, and H. Dao, "Rain attenuation analysis using Synthetic Storm Technique in Malaysia," IOP Conference Series: Materials Science and Engineering, Vol. 53, No. 1, 012045, 2013.
doi:10.1088/1757-899X/53/1/012045

30. Matricciani, E., "Physical-mathematical model of the dynamics of rain attenuation based on rate time series and a two-layer vertical structure of precipitation," Radio Sci., Vol. 31, No. 2, 281-295, March-April 1996.
doi:10.1029/95RS03129

31. Maggiori, D., "The computed transmission through rain in the 1-400 GHz frequency range for spherical and elliptical drops at any polarisation," Alta Freq., No. 50, 262-273, 1981.

32. Jiang, H., M. Sano, and M. Sekine, "Weibull raindrop-size distribution and its application to rain attenuation," IEE Proc. Microw. Antennas Propag., Vol. 144, No. 3, 197-200, June 1997.
doi:10.1049/ip-map:19971193

33. Maitra, A., S. Das, and A. K. Shukla, "Joint statistics of rain rate and event duration for a tropical in India," Indian Journal of Radio & Space Physics, Vol. 38, No. 6, 353-360, January 2010.

34. Malinga, S. J. and P. A. Owolawi, "Obtaining raindrop size model using the method of moments and its applications for South African radio systems," Progress In Electromagnetics Research B, Vol. 46, 119-138, 2013.
doi:10.2528/PIERB12070806

35. Ajayi, G. O., S. Feng, S. M. Radicella, and B. M. Reddy (Ed.), Handbook on Radiopropagation Related to Satellite Communications in Tropical and Subtropical Countries, ICTP, 1996.

36. Alonge, A. A., "Correlation of rain dropsize distribution with rain rate derived from disdrometers and rain gauge networks in Southern Africa,", MSc. Thesis, University of Kwa-Zulu Natal, December 2011.

37. Sumbiri, D., "Microwave and millimetre radio wave propagation modelling for terrestrial line-of-sight links in Central Africa,", Ph.D. Thesis, University of Kwa-Zulu Natal, June 2018.