Department of Electrical and Computer Engineering
University of Utah
USA
HomepageDepartment of Electrical and Computer Engineering
University of Florida
USA
HomepageDepartment of Electrical and Computer Engineering
University of Utah
USA
HomepageDepartment of Electrical and Computer Engineering
University of Florida
USA
HomepageDepartment of Electrical and Computer Engineering
University of Utah
USA
HomepageDepartment of Electrical and Computer Engineering
University of Florida
USA
Homepage1. Abdul Mawjood, K., S. S. Refaat, and W. G. Morsi, "Detection and prediction of faults in photovoltaic arrays: A review," 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), 1-8, Apr. 2018. Google Scholar
2. Alam, M. K., F. Khan, J. Johnson, and J. Flicker, "A comprehensive review of catastrophic faults in PV arrays: Types, detection, and mitigation techniques," IEEE Journal of Photovoltaics, Vol. 5, No. 3, 982-997, May 2015.
doi:10.1109/JPHOTOV.2015.2397599 Google Scholar
3. Khalil, I. U., et al., "Comparative analysis of photovoltaic faults and performance evaluation of its detection techniques," IEEE Access, Vol. 8, 26676-26700, 2020.
doi:10.1109/ACCESS.2020.2970531 Google Scholar
4. Smith, P., C. Furse, and J. Gunther, "Analysis of spread spectrum time domain reflectometry for wire fault location," IEEE Sensors Journal, Vol. 5, No. 6, 1469-1478, 2005.
doi:10.1109/JSEN.2005.858964 Google Scholar
5. Jones, S. B., J. M. Wraith, and D. Or, "Time domain reflectometry measurement principles and applications," Hydrological Processes, Vol. 16, No. 1, 141-153, 2002.
doi:10.1002/hyp.513 Google Scholar
6. Minet, J., S. Lambot, G. Delaide, J. A. Huisman, H. Vereecken, and M. Vanclooster, "A generalized frequency domain reflectometry modeling technique for soil electrical properties determination," Vadose Zone Journal, Vol. 9, No. 4, 1063-1072, 2010.
doi:10.2136/vzj2010.0004 Google Scholar
7. Shin, Y.-J., et al., "Application of time-frequency domain reflectometry for detection and localization of a fault on a coaxial cable," IEEE Transactions on Instrumentation and Measurement, Vol. 54, No. 6, 2493-2500, 2005.
doi:10.1109/TIM.2005.858115 Google Scholar
8. Lo, C. and C. Furse, "Noise domain reflectometry for wire fault location," IEEE Trans. EMC, Vol. 47, No. 1, 97-104, 2005. Google Scholar
9. Furse, C. M., M. Kafal, R. Razzaghi, and Y.-J. Shin, "Fault diagnosis for electrical systems and power networks: A review," IEEE Sensors Journal, Vol. 21, No. 2, 888-906, Jan. 2021.
doi:10.1109/JSEN.2020.2987321 Google Scholar
10. Furse, C., Y. C. Chung, C. Lo, and P. Pendayala, "A critical comparison of reflectometry methods for location of wiring faults," Smart Structures and Systems, Vol. 2, No. 1, 25-46, 2006.
doi:10.12989/sss.2006.2.1.025 Google Scholar
11. Benoit, E., et al., "Applicability of SSTDR analysis of complex loads," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2087-2088, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8888841 Google Scholar
12. Smail, M.-K., T. Hacib, L. Pichon, and F. Loete, "Detection and location of defects in wiring networks using time-domain reflectometry and neural networks," IEEE Transactions on Magnetics, Vol. 47, No. 5, 1502-1505, 2011.
doi:10.1109/TMAG.2010.2089503 Google Scholar
13. Smail, M. K., H. R. E. H. Bouchekara, L. Pichon, H. Boudjefdjouf, and R. Mehasni, "Diagnosis of wiring networks using particle swarm optimization and genetic algorithms," Computers & Electrical Engineering, Vol. 40, No. 7, 2236-2245, 2014.
doi:10.1016/j.compeleceng.2014.07.002 Google Scholar
14. Boudjefdjouf, H., R. Mehasni, A. Orlandi, H. R. E. H. Bouchekara, F. de Paulis, and M. K. Smail, "Diagnosis of multiple wiring faults using time-domain re ectometry and teaching-learning-based optimization," Electromagnetics, Vol. 35, No. 1, 10-24, 2015.
doi:10.1080/02726343.2015.971659 Google Scholar
15. Zhang, Q., M. Sorine, and M. Admane, "Inverse scattering for soft fault diagnosis in electric transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 141-148, Jan. 2011.
doi:10.1109/TAP.2010.2090462 Google Scholar
16. Kingston, S. R., et al., "Measurement of capacitance using spread spectrum time domain reflectometry (SSTDR) and dictionary matching," IEEE Sensors Journal, Vol. 20, No. 17, 10102-10109, 2020.
doi:10.1109/JSEN.2020.2992998 Google Scholar
17. Edun, A. S., et al., "Finding faults in PV systems: Supervised and unsupervised dictionary learning with SSTDR," IEEE Sensors Journal, 2020.
doi:10.1109/JSEN.2020.2992998 Google Scholar
18. Roy, S., M. K. Alam, F. Khan, J. Johnson, and J. Flicker, "An irradiance-independent, robust ground-fault detection scheme for PV arrays based on spread spectrum time-domain reflectometry (SSTDR)," IEEE Transactions on Power Electronics, Vol. 33, No. 8, 7046-7057, 2017.
doi:10.1109/TPEL.2017.2755592 Google Scholar
19. Ye, C., et al., "A digital twin of bridges for structural health monitoring," Proceedings of the 12th International Workshop on Structural Health Monitoring, 2019. Google Scholar
20. Seshadri, B. R. and T. Krishnamurthy, "Structural health management of damaged aircraft structures using digital twin concept," 25th AIAA/AHS Adaptive Structures Conference, 1675, 2017. Google Scholar
21. Ellis, H. D., et al., "A model for SSTDR signal propagation through photovoltaic strings," IEEE Journal of Photovoltaics, Vol. 10, No. 6, 1846-1852, 2020.
doi:10.1109/JPHOTOV.2020.3023801 Google Scholar
22. Tao, F., H. Zhang, A. Liu, and A. Y. C. Nee, "Digital twin in industry: State-of-the-art," IEEE Transactions on Industrial Informatics, Vol. 15, No. 4, 2405-2415, 2019.
doi:10.1109/TII.2018.2873186 Google Scholar
23. Nievinski, F. G. and K. M. Larson, "Forward modeling of GPS multipath for near-surface reflectometry and positioning applications," GPS Solutions, Vol. 18, No. 2, 309-322, 2014.
doi:10.1007/s10291-013-0331-y Google Scholar
24. Regalado, C., R. M. Carpena, A. Socorro, and J. H. Moreno, "Time domain reflectometry models as a tool to understand the dielectric response of volcanic soils," Geoderma, Vol. 117, No. 3-4, 313-330, 2003.
doi:10.1016/S0016-7061(03)00131-9 Google Scholar
25. Keysight Technologies, , Vector network analyzer data sheet, Keysight Technologies. [Online].Available: https://www.keysight.com/us/en/assets/7018-01424/data-sheets/5989-5479.pdf.
26. Kingston, S., et al., "A SSTDR methodology, implementations, and challenges," Sensors, Vol. 21, No. 16, 2021.
doi:10.3390/s21165268 Google Scholar
27. Kingston, S. R., et al., "Spread spectrum time domain reflectometry and steepest descent inversion to measure complex impedance," Applied Computational Electromagnetics Society Journal, Vol. 36, No. 2, 2021. Google Scholar
28. Harley, J. B., M. U. Saleh, S. Kingston, M. A. Scarpulla, and C. Furse, "Fast transient simulations for multi-segment transmission lines with a graphical model," Progress In Electromagnetics Research, Vol. 165, 67-82, 2019.
doi:10.2528/PIER19042105 Google Scholar
29. Ulaby, F., E. Michielssen, and U. Ravaioli, Fundamentals of Applied Electromagnetics, 6th Ed., Prentice Hall, 2010.
30. Furse, C., et al., "Spread spectrum time domain reflectometry for complex impedances: Application to PV arrays," 2018 IEEE AUTOTESTCON, 1-4, Sep. 2018. Google Scholar
31. Saleh, M. U., et al., "Signal propagation through piecewise transmission lines for interpretation of reflectometry in photovoltaic systems," IEEE Journal of Photovoltaics, Vol. 9, No. 2, 506-512, 2018.
doi:10.1109/JPHOTOV.2018.2884011 Google Scholar
32. LiveWire Innovation, , Live cable fault detection by LiveWire innovation, [Online]. Available: https://www.livewireinnovation.com/.
33. Jayakumar, N. K. T., et al., "Postprocessing for improved accuracy and resolution of spread spectrum time-domain reflectometry," IEEE Sensors Letters, Vol. 3, No. 6, 1-4, 2019.
doi:10.1109/LSENS.2019.2916636 Google Scholar
34. Wadell, B. C., Transmission Line Design Handbook, Artech House, The Artech House Microwave Library, 1991.
35. Edun, A. S., N. K. T. Jayakumar, S. R. Kingston, C. M. Furse, M. A. Scarpulla, and J. B. Harley, "Spread spectrum time domain reflectometry with lumped elements on asymmetric transmission lines," IEEE Sensors Journal, Vol. 21, No. 2, 921-929, 2020.
doi:10.1109/JSEN.2020.2967894 Google Scholar
36. Kim, K. A., C. Xu, L. Jin, and P. T. Krein, "A dynamic photovoltaic model incorporating capacitive and reverse-bias characteristics," IEEE Journal of Photovoltaics, Vol. 3, No. 4, 1334-1341, 2013.
doi:10.1109/JPHOTOV.2013.2276483 Google Scholar
37. Peimar Group SG300M |Reviews and Ratings |EnergySage, [Online]. Available: https://www.energysage.com/panels/Peimar+Group/SG300M/.
doi:10.1016/j.egypro.2012.02.046
38. Ferrara, C. and D. Philipp, "Why Do PV modules fail?," Energy Procedia, Vol. 15, 379-387, 2012.
doi:10.1364/OE.19.004242 Google Scholar
39. Moffitt, J. R., C. Osseforth, and J. Michaelis, "Time-gating improves the spatial resolution of STED microscopy," Opt. Express, Vol. 19, No. 5, 4242-4254, Feb. 2011.
doi:10.1109/8.558655 Google Scholar
40. Weedon, W. H. and C. M. Rappaport, "A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 401-410, 1997.
doi:10.1109/15.293278 Google Scholar
41. Furse, C. M., J.-Y. Chen, and O. P. Gandhi, "The use of the frequency-dependent finite-difference time-domain method for induced current and SAR calculations for a heterogeneous model of the human body," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 2, 128-133, 1994.
doi:10.1109/JPHOTOV.2020.3030185 Google Scholar
42. Saleh, M. U., et al., "Detection and localization of damaged photovoltaic cells and modules using spread spectrum time domain reflectometry," IEEE Journal of Photovoltaics, Vol. 11, No. 1, 195-201, Jan. 2021.
doi:10.1109/JSEN.2021.3059412 Google Scholar
43. Benoit, E., et al., "Quantifying the window of uncertainty for SSTDR measurements of a photovoltaic system," IEEE Sensors Journal, Vol. 21, No. 8, 9890-9899, 2021. Google Scholar