Vol. 94
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2021-12-07
Spread Spectrum Time Domain Reflectometry (SSTDR) Digital Twin Simulation of Photovoltaic Systems for Fault Detection and Location
By
Progress In Electromagnetics Research B, Vol. 94, 105-126, 2021
Abstract
Utilizing spread spectrum time domain reflectometry (SSTDR) to detect, locate, and characterize faults in photovoltaic (PV) systems is examined in this paper. We present a method to obtain the model parameters that are needed to produce digital twin SSTDR responses for PV systems. The digital twin SSTDR responses could be used to predict faults within the PV systems. The model parameters are the reflection and transmission coefficients at each impedance discontinuity in the PV system along with the propagation coefficients across each PV cable segment. We obtain model parameter by applying inverse modeling techniques to experimental SSTDR data associated with PV systems. Our model parameters can be used in any digital twin simulation method for modeling reflectometry in frequency-dependent and complex loads. For validation, we used the model parameters in a graph network simulation engine and adapted it to be used for SSTDR digital twin simulations in PV systems. We produced simulations for 0 to 10 PV modules connected in series. We also simulated SSTDR responses for open circuit disconnections in a PV setup containing 10 PV modules in series. Results show that all but one simulated disconnect locations match experimental disconnection locations of the same setup with an error of less than 5%.
Citation
Samuel R. Kingston, Cody La Flamme, Mashad Uddin Saleh, Hunter Ellis, Evan Benoit, Ayobami Edun, Michael A. Scarpulla, Cynthia Furse, and Joel B. Harley, "Spread Spectrum Time Domain Reflectometry (SSTDR) Digital Twin Simulation of Photovoltaic Systems for Fault Detection and Location," Progress In Electromagnetics Research B, Vol. 94, 105-126, 2021.
doi:10.2528/PIERB21071507
References

1. Abdul Mawjood, K., S. S. Refaat, and W. G. Morsi, "Detection and prediction of faults in photovoltaic arrays: A review," 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), 1-8, Apr. 2018.

2. Alam, M. K., F. Khan, J. Johnson, and J. Flicker, "A comprehensive review of catastrophic faults in PV arrays: Types, detection, and mitigation techniques," IEEE Journal of Photovoltaics, Vol. 5, No. 3, 982-997, May 2015.
doi:10.1109/JPHOTOV.2015.2397599

3. Khalil, I. U., et al., "Comparative analysis of photovoltaic faults and performance evaluation of its detection techniques," IEEE Access, Vol. 8, 26676-26700, 2020.
doi:10.1109/ACCESS.2020.2970531

4. Smith, P., C. Furse, and J. Gunther, "Analysis of spread spectrum time domain reflectometry for wire fault location," IEEE Sensors Journal, Vol. 5, No. 6, 1469-1478, 2005.
doi:10.1109/JSEN.2005.858964

5. Jones, S. B., J. M. Wraith, and D. Or, "Time domain reflectometry measurement principles and applications," Hydrological Processes, Vol. 16, No. 1, 141-153, 2002.
doi:10.1002/hyp.513

6. Minet, J., S. Lambot, G. Delaide, J. A. Huisman, H. Vereecken, and M. Vanclooster, "A generalized frequency domain reflectometry modeling technique for soil electrical properties determination," Vadose Zone Journal, Vol. 9, No. 4, 1063-1072, 2010.
doi:10.2136/vzj2010.0004

7. Shin, Y.-J., et al., "Application of time-frequency domain reflectometry for detection and localization of a fault on a coaxial cable," IEEE Transactions on Instrumentation and Measurement, Vol. 54, No. 6, 2493-2500, 2005.
doi:10.1109/TIM.2005.858115

8. Lo, C. and C. Furse, "Noise domain reflectometry for wire fault location," IEEE Trans. EMC, Vol. 47, No. 1, 97-104, 2005.

9. Furse, C. M., M. Kafal, R. Razzaghi, and Y.-J. Shin, "Fault diagnosis for electrical systems and power networks: A review," IEEE Sensors Journal, Vol. 21, No. 2, 888-906, Jan. 2021.
doi:10.1109/JSEN.2020.2987321

10. Furse, C., Y. C. Chung, C. Lo, and P. Pendayala, "A critical comparison of reflectometry methods for location of wiring faults," Smart Structures and Systems, Vol. 2, No. 1, 25-46, 2006.
doi:10.12989/sss.2006.2.1.025

11. Benoit, E., et al., "Applicability of SSTDR analysis of complex loads," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 2087-2088, 2019.
doi:10.1109/APUSNCURSINRSM.2019.8888841

12. Smail, M.-K., T. Hacib, L. Pichon, and F. Loete, "Detection and location of defects in wiring networks using time-domain reflectometry and neural networks," IEEE Transactions on Magnetics, Vol. 47, No. 5, 1502-1505, 2011.
doi:10.1109/TMAG.2010.2089503

13. Smail, M. K., H. R. E. H. Bouchekara, L. Pichon, H. Boudjefdjouf, and R. Mehasni, "Diagnosis of wiring networks using particle swarm optimization and genetic algorithms," Computers & Electrical Engineering, Vol. 40, No. 7, 2236-2245, 2014.
doi:10.1016/j.compeleceng.2014.07.002

14. Boudjefdjouf, H., R. Mehasni, A. Orlandi, H. R. E. H. Bouchekara, F. de Paulis, and M. K. Smail, "Diagnosis of multiple wiring faults using time-domain re ectometry and teaching-learning-based optimization," Electromagnetics, Vol. 35, No. 1, 10-24, 2015.
doi:10.1080/02726343.2015.971659

15. Zhang, Q., M. Sorine, and M. Admane, "Inverse scattering for soft fault diagnosis in electric transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 141-148, Jan. 2011.
doi:10.1109/TAP.2010.2090462

16. Kingston, S. R., et al., "Measurement of capacitance using spread spectrum time domain reflectometry (SSTDR) and dictionary matching," IEEE Sensors Journal, Vol. 20, No. 17, 10102-10109, 2020.
doi:10.1109/JSEN.2020.2992998

17. Edun, A. S., et al., "Finding faults in PV systems: Supervised and unsupervised dictionary learning with SSTDR," IEEE Sensors Journal, 2020.
doi:10.1109/JSEN.2020.2992998

18. Roy, S., M. K. Alam, F. Khan, J. Johnson, and J. Flicker, "An irradiance-independent, robust ground-fault detection scheme for PV arrays based on spread spectrum time-domain reflectometry (SSTDR)," IEEE Transactions on Power Electronics, Vol. 33, No. 8, 7046-7057, 2017.
doi:10.1109/TPEL.2017.2755592

19. Ye, C., et al., "A digital twin of bridges for structural health monitoring," Proceedings of the 12th International Workshop on Structural Health Monitoring, 2019.

20. Seshadri, B. R. and T. Krishnamurthy, "Structural health management of damaged aircraft structures using digital twin concept," 25th AIAA/AHS Adaptive Structures Conference, 1675, 2017.

21. Ellis, H. D., et al., "A model for SSTDR signal propagation through photovoltaic strings," IEEE Journal of Photovoltaics, Vol. 10, No. 6, 1846-1852, 2020.
doi:10.1109/JPHOTOV.2020.3023801

22. Tao, F., H. Zhang, A. Liu, and A. Y. C. Nee, "Digital twin in industry: State-of-the-art," IEEE Transactions on Industrial Informatics, Vol. 15, No. 4, 2405-2415, 2019.
doi:10.1109/TII.2018.2873186

23. Nievinski, F. G. and K. M. Larson, "Forward modeling of GPS multipath for near-surface reflectometry and positioning applications," GPS Solutions, Vol. 18, No. 2, 309-322, 2014.
doi:10.1007/s10291-013-0331-y

24. Regalado, C., R. M. Carpena, A. Socorro, and J. H. Moreno, "Time domain reflectometry models as a tool to understand the dielectric response of volcanic soils," Geoderma, Vol. 117, No. 3-4, 313-330, 2003.
doi:10.1016/S0016-7061(03)00131-9

25. Keysight Technologies, , Vector network analyzer data sheet, Keysight Technologies. [Online].Available: https://www.keysight.com/us/en/assets/7018-01424/data-sheets/5989-5479.pdf.

26. Kingston, S., et al., "A SSTDR methodology, implementations, and challenges," Sensors, Vol. 21, No. 16, 2021.
doi:10.3390/s21165268

27. Kingston, S. R., et al., "Spread spectrum time domain reflectometry and steepest descent inversion to measure complex impedance," Applied Computational Electromagnetics Society Journal, Vol. 36, No. 2, 2021.

28. Harley, J. B., M. U. Saleh, S. Kingston, M. A. Scarpulla, and C. Furse, "Fast transient simulations for multi-segment transmission lines with a graphical model," Progress In Electromagnetics Research, Vol. 165, 67-82, 2019.
doi:10.2528/PIER19042105

29. Ulaby, F., E. Michielssen, and U. Ravaioli, Fundamentals of Applied Electromagnetics, 6th Ed., Prentice Hall, 2010.

30. Furse, C., et al., "Spread spectrum time domain reflectometry for complex impedances: Application to PV arrays," 2018 IEEE AUTOTESTCON, 1-4, Sep. 2018.

31. Saleh, M. U., et al., "Signal propagation through piecewise transmission lines for interpretation of reflectometry in photovoltaic systems," IEEE Journal of Photovoltaics, Vol. 9, No. 2, 506-512, 2018.
doi:10.1109/JPHOTOV.2018.2884011

32. LiveWire Innovation, , Live cable fault detection by LiveWire innovation, [Online]. Available: https://www.livewireinnovation.com/.

33. Jayakumar, N. K. T., et al., "Postprocessing for improved accuracy and resolution of spread spectrum time-domain reflectometry," IEEE Sensors Letters, Vol. 3, No. 6, 1-4, 2019.
doi:10.1109/LSENS.2019.2916636

34. Wadell, B. C., Transmission Line Design Handbook, Artech House, The Artech House Microwave Library, 1991.

35. Edun, A. S., N. K. T. Jayakumar, S. R. Kingston, C. M. Furse, M. A. Scarpulla, and J. B. Harley, "Spread spectrum time domain reflectometry with lumped elements on asymmetric transmission lines," IEEE Sensors Journal, Vol. 21, No. 2, 921-929, 2020.
doi:10.1109/JSEN.2020.2967894

36. Kim, K. A., C. Xu, L. Jin, and P. T. Krein, "A dynamic photovoltaic model incorporating capacitive and reverse-bias characteristics," IEEE Journal of Photovoltaics, Vol. 3, No. 4, 1334-1341, 2013.
doi:10.1109/JPHOTOV.2013.2276483

37. Peimar Group SG300M |Reviews and Ratings |EnergySage, [Online]. Available: https://www.energysage.com/panels/Peimar+Group/SG300M/.
doi:10.1016/j.egypro.2012.02.046

38. Ferrara, C. and D. Philipp, "Why Do PV modules fail?," Energy Procedia, Vol. 15, 379-387, 2012.
doi:10.1364/OE.19.004242

39. Moffitt, J. R., C. Osseforth, and J. Michaelis, "Time-gating improves the spatial resolution of STED microscopy," Opt. Express, Vol. 19, No. 5, 4242-4254, Feb. 2011.
doi:10.1109/8.558655

40. Weedon, W. H. and C. M. Rappaport, "A general method for FDTD modeling of wave propagation in arbitrary frequency-dispersive media," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 401-410, 1997.
doi:10.1109/15.293278

41. Furse, C. M., J.-Y. Chen, and O. P. Gandhi, "The use of the frequency-dependent finite-difference time-domain method for induced current and SAR calculations for a heterogeneous model of the human body," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 2, 128-133, 1994.
doi:10.1109/JPHOTOV.2020.3030185

42. Saleh, M. U., et al., "Detection and localization of damaged photovoltaic cells and modules using spread spectrum time domain reflectometry," IEEE Journal of Photovoltaics, Vol. 11, No. 1, 195-201, Jan. 2021.
doi:10.1109/JSEN.2021.3059412

43. Benoit, E., et al., "Quantifying the window of uncertainty for SSTDR measurements of a photovoltaic system," IEEE Sensors Journal, Vol. 21, No. 8, 9890-9899, 2021.