Vol. 95
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-05-20
The Role of Jordan Blocks in the MOT-Scheme Time Domain EFIE Linear-in-Time Solution Instability
By
Progress In Electromagnetics Research B, Vol. 95, 123-140, 2022
Abstract
The marching-on-in-time electric field integral equation (MOT-EFIE) and the marching-on-in-time time differentiated electric field integral equation (MOT-TDEFIE) based on a Rao-Wilton-Glisson (RWG) spatial discretization. In both formulations we employ the Dirac-delta temporal testing functions, however they differ in temporal basis functions, i.e. hat and quadratic spline basis functions. These schemes suffer from the linear-in-time solution instability. We analyze the corresponding companion matrices using projection matrices and prove mathematically that each independent solenoidal current density corresponds to a Jordan block of size two. In combination with Lidskii-Vishik-Lyusternik perturbation theory we find that finite precision causes these Jordan block eigenvalues to split and this is the root cause of the instability of both schemes. The splitted eigenvalues cause solutions with exponentially increasing magnitudes that are initially observed as constant and/or linear-in-time, yet these become exponentially increasing at discrete time steps beyond the inverse square root of the error due to finite precision, i.e. approximately after one hundred million discrete time steps in double precision arithmetic. We provide numerical evidence to further illustrate these findings.
Citation
Petrus Wilhelmus Nicolaas (Pieter) Van Diepen, Roeland Johannes Dilz, Adrianus Petrus Maria (Peter) Zwamborn, and Martijn Constant van Beurden, "The Role of Jordan Blocks in the MOT-Scheme Time Domain EFIE Linear-in-Time Solution Instability," Progress In Electromagnetics Research B, Vol. 95, 123-140, 2022.
doi:10.2528/PIERB22030205
References

1. Jin, J.-M. and S. Yan, "Multiphysics modeling in electromagnetics," IEEE Antennas and Propagation Magazine, 14-26, April 2019.

2. Sankaran, K., "Are you using the right tools in computational electromagnetics?," Engineering Reports, Vol. 1, No. 3, 1-19, 2019.
doi:10.1002/eng2.12041

3. Miller, E. K., "A selective survey of computational electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 9, 1281-1305, 1988.
doi:10.1109/8.8607

4. Weile, D. S., J. Li, D. A. Hopkins, and C. Kerwein, "New trends in time-domain integral equations," New Trends in Computational Electromagnetics, O. Ergul, ed., 1st Edition, Ch. 5, 207-233, SciTech Publishing, London, 2019.

5. Liu, Y. and E. Michielssen, "Parallel fast time-domain integral-equation methods for transient electromagnetic analysis," Parallel Algorithms in Computational Science, A. Grama and A. H. Sameh (eds.), 1st Edition, Ch. 2.8, 347-379, Cham, Switzerland, Birkhauser, 2020.

6. Poggio, A. and E. Miller, "Integral equation solutions of three-dimensional scattering problems," Computer Techniques for Electromagnetics, R. Mittra (ed.), 1st Edition, Ch. 4, 159-264, Pergamon Press, Oxford, 1973.

7. Andriulli, F. P., K. Cools, F. Olyslager, and E. Michielssen, "Time domain Calderon identities and their application to the integral equation analysis of scattering by PEC objects. Part II: Stability," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2365-2375, 2009.
doi:10.1109/TAP.2009.2024464

8. Shanker, B., M. Lu, J. Yuan, and E. Michielssen, "Time domain integral equation analysis of scattering from composite bodies via exact evaluation of radiation fields," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 5, 1506-1520, 2009.
doi:10.1109/TAP.2009.2016700

9. Van 't Wout, E., D. R. van der Heul, H. van der Ven, and C. Vuik, "The influence of the exact evaluation of radiation fields in finite precision arithmetic on the stability of the time domain integral equation method," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6064-6074, 2013.
doi:10.1109/TAP.2013.2281365

10. Van 't Wout, E., D. R. van der Heul, H. van der Ven, and C. Vuik, "Stability analysis of the marching-on-in-time boundary element method for electromagnetics," Journal of Computational and Applied Mathematics, Vol. 294, 358-371, 2016.
doi:10.1016/j.cam.2015.09.002

11. Weile, D. S., G. Pisharody, N. W. Chen, B. Shanker, and E. Michielssen, "A novel scheme for the solution of the time-domain integral equations of electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 1, 283-295, 2004.
doi:10.1109/TAP.2003.822450

12. Tian, X. and G. Xiao, "Time-domain augmented electric field integral equation for a robust marching on in time solver," IET Microwaves, Antennas and Propagation, Vol. 8, No. 9, 688-694, 2014.
doi:10.1049/iet-map.2013.0476

13. Cools, K., F. P. Andriulli, F. Olyslager, and E. Michielssen, "Time domain Calderon identities and their application to the integral equation analysis of scattering by PEC objects. Part I: Preconditioning," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 8, 2352-2364, 2009.
doi:10.1109/TAP.2009.2024460

14. Beghein, Y., K. Cools, and F. P. Andriulli, "A DC stable and large-time step well-balanced TDEFIE based on quasi-helmholtz projectors," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 3087-3097, 2015.
doi:10.1109/TAP.2015.2426796

15. Dely, A., F. P. Andriulli, and K. Cools, "Large time step and DC stable TD-EFIE discretized with implicit Runge-Kutta methods," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 2, 976-985, 2020.
doi:10.1109/TAP.2019.2943443

16. Dodson, S., S. Walker, and M. Bluck, "Implicitness and stability of time domain integral equation scattering analyses," The Applied Computational Electromagnetics Society, Vol. 13, No. 3, 291-301, 1998.

17. Wilton, D. R., S. M. Rao, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

18. Horn, R. A. and C. R. Johnson, Matrix Analysis, 2nd Ed., Cambridge University Press, 2013.

19. Moro, J., J. V. Burke, and M. L. Overton, "On the Lidski-Vishik-Lyusternik perturbation theory for eigenvalues of matrices with arbitrary Jordan structure," SIAM Journal on Matrix Analysis and Applications, Vol. 18, No. 4, 793-817, 1997.
doi:10.1137/S0895479895294666

20. Vechinski, D. and S. Rao, "A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 6, 661-665, 1992.
doi:10.1109/8.144600

21. Andriulli, F. P., K. Cools, I. Bogaert, and E. Michielssen, "On a well-conditioned electric field integral operator for multiply connected geometries," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 2077-2087, 2013.
doi:10.1109/TAP.2012.2234072

22. Bronson, R., G. B. Costa, and J. T. Saccoman, "Appendix A --- Jordan canonical forms," Linear Algebra, 379-411, Academic Press, 2014.