Department of Electrical Engineering
UiT The Arctic University of Norway
Norway
Homepage
Department of Electronic and Communication Engineering
Government Mahila Engineering College
India
Homepage1. Rappaport, T. S., Wireless Communications: Principles and Practice, 2nd Ed., Prentice Hall PTR, New Jersey, 1996.
2. Goldsmith, A., Wireless Communications, Cambridge University Press, 2005.
3. Hillebrand, F., "The creation of standards for global mobile communication: GSM and UMTS standardization from 1982 to 2000," IEEE Wirel. Commun., Vol. 20, No. 4, 24-33, 2013. Google Scholar
4. Saeed, N., A. Bader, T. Y. Al-Naffouri, and M. S. Alouini, "When wireless communication faces COVID-19: Combating the pandemic and saving the economy," Frontiers in Communications and Networks, Vol. 1, No. 2, 2020. Google Scholar
5. Bliss, D. W. and S. Govindasamy, Adaptive Wireless Communications: MIMO Channels and Networks, Cambridge University Press, 2013.
6. Dahlman, E., S. Parkvall, and J. Skold, 4G: LTE/LTE-advanced for Mobile Broadband, Academic Press, 2013.
7. Biglieri, E., R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj, and H. V. Poor, MIMO Wireless Communications, Cambridge University Press, 2007.
8. Hampton, J. R., Introduction to MIMO Communications, Cambridge University Press, 2013.
9. Moradikordalivand, A., C. Y. Leow, T. AbdRahman, S. Ebrahimi, and T. H. Chua, "Wideband MIMO antenna system with dual polarization for Wi-Fi and LTE applications," Int. J. Microw. Wireless Technol., Vol. 8, No. 2, 643-650, 2020. Google Scholar
10. Warren, D. and D. Calum, "Understanding 5G: Perspectives on future technological advancements in mobile," GSMA Intelligence Report, 2014. Google Scholar
11., https://www.ericsson.com/en/press-releases/2018/11/5g-estimated-to-reach-1.5-billion-subscriptions-in-2024-ericsson-mobility-report, 2018. Google Scholar
12. Matin, M. A., "Review on millimeter wave antennas-potential candidate for 5G enabled applications," Advanced Electromagnetics, Vol. 5, No. 2, 98-105, 2016. Google Scholar
13. Chih-Lin, I., S. Han, Z. Xu, Q. Sun, and Z. Pan, "5G: Rethink mobile communications for 2020," Philosophical Trans. Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 374, No. 2062, 20140432, 2016. Google Scholar
14., https://www.qualcomm.com/media/documents/files/5g-vision-use-cases.pdf. Google Scholar
15. Gawas, A. U., "An overview on evolution of mobile wireless communication networks: 1G-6G," Int. J. Recent and Innovation Trends in Computing and Communication, Vol. 3, No. 4, 3130-3133, 2015. Google Scholar
16. Anguera, J., A. Andújar, M. C. Huynh, C. Orlenius, C. Picher, and C. Puente, "Advances in antenna technology for wireless handheld devices," Int. J. Antennas Propag.1, 1-25, 2013. Google Scholar
17. Lam, K. Y., K. M. Luk, K. F. Lee, H. Wong, and K. B. Ng, "Small circularly polarized U-slot wideband patch antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 87-90, 2011. Google Scholar
18. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]," IEEE Antennas Propag. Mag., Vol. 55, No. 4, 218-232, 2013. Google Scholar
19. Li, Y., J. Wang, and K. M. Luk, "Millimeter-wave multibeam aperture-coupled magnetoelectric dipole array with planar substrate integrated beamforming network for 5G applications," IEEE Trans. Antennas Propag., Vol. 65, No. 12, 6422-6431, 2017. Google Scholar
20. Yu, B., K. Yang, and G. Yang, "A novel 28 GHz beam steering array for 5G mobile device with metallic casing application," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 462-466, 2017. Google Scholar
21. Boxall, A., , www.digitaltrends.com/mobile/xiaomi-mi-mix-3-news, 2019. Google Scholar
22. Boxall, A., , www.digitaltrends.com/android/samsung-galaxy-s10-5g-news, 2019. Google Scholar
23. Simruni, M. and S. Jam, "Radiation performance improvement of wideband microstrip antenna array using wideband AMC structure," Int. J. Communication Systems, Vol. 32, No. 11, e3962, 2019. Google Scholar
24. Das, S., T. Bose, and H. Islam, "Design, and acceptance test of compact planar monopole antenna for LTE smartphone considering SAR, TRP, and HAC values," Int. J. Communication Systems, Vol. 32, No. 18, e4155, 2019. Google Scholar
25. Kraus, J. D., R. J. Marhefka, and A. S. Khan, Antennas and Wave Propagation, Tata McGraw-Hill Education, 2006.
26. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.
27. Yu, G., G. Y. Li, L. C. Wang, A. Maaref, J. Lee, and D. Lopez-Perez, "Guest editorial: LTE in unlicensed spectrum," IEEE Wirel. Commun., Vol. 23, No. 5, 6-7, 2016. Google Scholar
28., https://gsacom.com/5G-spectrum-bands, 2017. Google Scholar
29., https://www.fcc.gov/document/fcc-adopts-rules-facilitate-next-generation-wireless-technologies, 2016. Google Scholar
30., https://rspg-spectrum.eu/wp-content/uploads/2013/05/RPSG16-032-Opinion 5G.pdf, 2016. Google Scholar
31. Marcus, M. J., "5G and IMT for 2020 and beyond. [Spectrum Policy and Regulatory Issues]," IEEE Wirel. Commun., Vol. 22, No. 3, 2-3, 2015. Google Scholar
32., https://www.qualcomm.com/news/onq/2017/10/04/path-opening-more-spectrum-5g-us, 2017. Google Scholar
33. Joint Task Group. ITUR, Annex 3 to Joint Task Group 4-5-6-7 Chairman's Report --- Working document towards preliminary draft CPM text for WRC-15 agenda item 1.1. Tech. Rep. Doc. 2013; 4-5-6-7/393-E. Google Scholar
34. Resolution ITUR. 233, Studies on frequency-related matters on international mobile telecommunications and other terrestrial mobile broadband applications. Tech. Rep. 2012; 233 [COM6/8]. Google Scholar
35., https://www.miwv.com/5g-radio-frequency, 2018. Google Scholar
36. MacCartney, G. R., J. Zhang, S. Nie, and T. S. Rappaport, "Path loss models for 5G millimeter wave propagation channels in urban microcells," 2013 IEEE Global Communications Conference (GLOBECOM), 3948-3953, 2013. Google Scholar
37., https://www.cablefree.net/wirelesstechnology/4glte/5g-frequency-bands-lte/. Google Scholar
38. Andrews, J. G., S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C. Zhang, "What will 5G be?," IEEE J. Selected Areas Communications, Vol. 32, No. 5, 1065-1082, 2014. Google Scholar
39. Niu, Y., Y. Li, D. Jin, L. Su, and A. V. Vasilakos, "A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges," Wireless Networks, Vol. 21, No. 8, 2657-2676, 2015. Google Scholar
40. Rappaport, T. S., J. N. Murdock, and F. Gutierrez, "State of the art in 60-GHz integrated circuits and systems for wireless communications," Proc. of the IEEE, Vol. 99, No. 8, 1390-1436, 2011. Google Scholar
41. Jameel, F., Z. Hamid, F. Jabeen, S. Zeadally, and M. A. Javed, "A survey of device-to-device communications: Research issues and challenges," IEEE Commun. Surveys & Tutorials, Vol. 20, No. 2, 2133-2168, 2018. Google Scholar
42. Chiaraviglio, L., C. Di Paolo, and N. B. Melazzi, "5G network planning under service and EMF constraints: Formulation and solutions," IEEE Trans. Mobile Computing, 1-18, 2021. Google Scholar
43. Jaber, M., M. A. Imran, R. Tafazolli, and A. Tukmanov, "5G backhaul challenges and emerging research directions: A survey," IEEE Access, Vol. 4, 1743-1766, 2016. Google Scholar
44. Ahmad, I., T. Kumar, M. Liyanage, J. Okwuibe, M. Ylianttila, and A. Gurtov, "Overview of 5G security challenges and solutions," IEEE Commun. Standards Mag., Vol. 2, No. 1, 36-43, 2018. Google Scholar
45., https://www.bench.com/setting-the-benchmark/challenges-when-selecting-the-right-substrate-board-material-to-make-a-5g-mmwave-antenna, 2019. Google Scholar
46., https://rogerscorp.com/-/media/project/rogerscorp/documents/advanced-connectivity-solutions/english/data-sheets/rt-duroid-5870-5880-data-sheet.pdf. Google Scholar
47., https://rogerscorp.com/-/media/project/rogerscorp/documents/advanced-connectivity-solutions/english/data-sheets/ro3000-laminate-data-sheet-ro3003-ro3006-ro3010-ro3035.pdf. Google Scholar
48., https://rogerscorp.com/-/media/project/rogerscorp/documents/advanced-connectivity-solutions/english/data-sheets/ro4000-laminates-ro4003c-and-ro4350b-data-sheet.pdf. Google Scholar
49., https://en.wikipedia.org/wiki/FR-4. Google Scholar
50. Zhang, L., S. Zhao, P. Shang, J. Liu, and F. Han, "Distributed adaptive range extension setting for small cells in heterogeneous cellular network," 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), 1-7, 2017. Google Scholar
51. Mehran, F. and A. Rahimian, "Physical layer performance enhancement for femtocell SISO/MISO soft real-time wireless communication systems employing serial concatenation of quadratic interleaved codes," IEEE 20th Iranian Conference on Electrical Engineering (ICEE2012), 118-1193, 2012. Google Scholar
52. Bouras, C. and G. Diles, "Energy efficiency in sleep mode for 5G femtocells," 2017 IEEE Wireless Days, 143-145, 2017. Google Scholar
53. Wang, C.-J. and C.-H. Lin, "A circularly polarized quasi-loop antenna," Progress In Electromagnetics Research, Vol. 84, 333-348, 2008. Google Scholar
54. Khalily, M., R. Tafazolli, T. A. Rahman, and M. R. Kamarudin, "Design of phased arrays of series-fed patch antennas with reduced number of the controllers for 28-GHz mm-wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 15, 1305-1308, 2015. Google Scholar
55. Ta, S. X., H. Choo, and I. Park, "Broadband printed-dipole antenna, and its arrays for 5G applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2183-2186, 2017. Google Scholar
56. Dadgarpour, A., M. S. Sorkherizi, and A. A. Kishk, "Wideband low loss magnetoelectric dipole antenna for 5G wireless network with gain enhancement using meta lens and gap waveguide technology feeding," IEEE Trans. Antennas Propag., Vol. 64, No. 12, 5094-5101, 2016. Google Scholar
57. Park, S. J., D. H. Shin, and S. O. Park, "Low side-lobe substrate-integrated-waveguide antenna array using broadband unequal feeding network for millimeter-wave handset device," IEEE Trans. Antennas Propag., Vol. 64, No. 2, 923-932, 2015. Google Scholar
58. Ali, M., K. K. Sharma, R. P. Yadav, A. Kumar, F. Jiang, Q. S. Cheng, and G. L. Huang, "Design of dual mode wideband SIW slot antenna for 5G applications," Int. J. RF Microw. Comput.-Aided Engineering, Vol. 30, No. 12, e22449, 2020. Google Scholar
59. Ullah, H. and F. A. Tahir, "A wide-band rhombus monopole antenna array for millimeter wave applications," Microw. Optical Technol. Lett., Vol. 62, No. 4, 2111-2117, 2020. Google Scholar
60. Yang, W. C., H. Wang, W. Q. Che, Y. Huang, and J. Wang, "High-gain, and low-loss millimeter-wave LTCC antenna array using artificial magnetic conductor structure," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 390-395, 2014. Google Scholar
61. Cheng, Y. and Y. Dong, "A compact folded SIW multibeam antenna array for 5G millimeter wave applications," Microw. Optical Technol. Lett., Vol. 63, No. 3, 1236-1242, 2021. Google Scholar
62. Malathi, A. C. J. and D. Thiripurasundari, "Review on isolation techniques in MIMO antenna systems," Indian Journal of Science and Technology, Vol. 9, No. 35, 1-10, 2016. Google Scholar
63. Sharawi, M. S., "Printed multi-band MIMO antenna systems and their performance metrics [wireless corner]," IEEE Antennas Propag. Mag., Vol. 55, No. 4, 218-232, 2013. Google Scholar
64. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electron. Lett., Vol. 39, No. 9, 705-707, 2003. Google Scholar
65. Hallbjorner, P., "The significance of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas," IEEE Antennas Wirel. Propag. Lett., Vol. 4, 97-99, 2005. Google Scholar
66. Rosengren, K. and P. S. Kildal, "Radiation efficiency, correlation, diversity gain and capacity of a six-monopole antenna array for a MIMO system: Theory, simulation, and measurement in reverberation chamber," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 152, No. 1, 7-16, 2005. Google Scholar
67. Chae, S. H., S. K. Oh, and S. O. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 6, 122-125, 2007. Google Scholar
68. Shin, H. and J. H. Lee, "Capacity of multiple antennas fading channels: Spatial fading correlation, double scattering, and keyhole," IEEE Trans. Information Theory, Vol. 49, No. 10, 2636-2647, 2003. Google Scholar
69. Jilani, S. F. and A. Alomainy, "Millimeter-wave T-shaped MIMO antenna with defected ground structures for 5G cellular networks," IET Microw., Antennas & Propag., Vol. 12, No. 4, 672-677, 2018. Google Scholar
70. Lin, M., P. Liu, and Z. Guo, "Gain-enhanced Ka-band MIMO antennas based on the SIW corrugated technique," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 3084-3087, 2017. Google Scholar
71. Khalid, M., S. IffatNaqvi, N. Hussain, M. Rahman, S. S. Mirjavadi, M. J. Khan, and Y. Amin, "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020. Google Scholar
72. Zhang, Y., J. Y. Deng, M. J. Li, D. Sun, and L. X. Guo, "A MIMO dielectric resonator antenna with improved isolation for 5G mm-wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 3, 747-751, 2019. Google Scholar
73. Sharma, S., B. K. Kanaujia, and M. K. Khandelwal, "Implementation of four-port MIMO diversity microstrip antenna with suppressed mutual coupling and cross-polarized radiations," Microsystem Technologies, Vol. 26, No. 2, 993-1000, 2020. Google Scholar
74. Ikram, M., M. S. Sharawi, K. Klionovski, and A. Shamim, "A switched-beam millimeter-wave array with MIMO configuration for 5G applications," Microw. Optical Technol. Lett., Vol. 60, No. 3, 915-920, 2018. Google Scholar
75. Wani, Z., M. P. Abegaonkar, and S. K. Koul, "A 28-GHz antenna for 5G MIMO applications," Progress In Electromagnetics Research Letters, Vol. 78, 73-79, 2018. Google Scholar
76. Gupta, S., Z. Briqech, A. R. Sebak, and T. A. Denidni, "Mutual-coupling reduction using metasurface corrugations for 28 GHz MIMO applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2763-2766, 2017. Google Scholar
77. Usman, M., E. Kobal, J. Nasir, Y. Zhu, C. Yu, and A. Zhu, "Compact SIW fed dual-port single element annular slot MIMO antenna for 5G mmWave applications," IEEE Access, Vol. 9, 91995-92002, 2021. Google Scholar
78. Kumar, A., A. Q. Ansari, B. K. Kanaujia, J. Kishor, and L. Matekovits, "A review on different techniques of mutual coupling reduction between elements of any MIMO antenna. Part 1: DGSs and parasitic structures," Radio Science, Vol. 56, No. 2, e2020RS007122, 2021. Google Scholar
79. Nadeem, I. and D.-Y. Choi, "Study on mutual coupling reduction techniques for MIMO antennas," IEEE Access, Vol. 7, 563-586, 2018. Google Scholar
80. Han, T. Y., "Broadband circularly polarized square-slot antenna," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 3, 549-554, 2008. Google Scholar
81. Hussain, N., M. J. Jeong, J. Park, and N. Kim, "A broadband circularly polarized fabry-perot resonant antenna using a single-layered PRS for 5G MIMO applications," IEEE Access, Vol. 7, 42897-42907, 2019. Google Scholar
82. Chen, H., Y. Shao, Y. Zhang, C. Zhang, and Z. Zhang, "A low-profile broadband circularly polarized mmWave antenna with special-shaped ring slot," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 6, 1492-1496, 2019. Google Scholar
83. Kumar, A., A. Kumar, and A. Kumar, "A broadband circularly polarized monopole antenna for millimeter-wave short range 5G wireless communication," Int. J. RF Microw. Comput.-Aided Engineering, Vol. 31, No. 1, e22518, 2021. Google Scholar
84. Jian, R., Y. Chen, and T. Chen, "Compact wideband circularly polarized antenna with symmetric parasitic rectangular patches for Ka-band applications," Int. J. Antennas Propag., 1-8, 2019. Google Scholar
85. Wu, Q., J. Hirokawa, J. Yin, C. Yu, H. Wang, and W. Hong, "Millimeter-wave multibeam end fire dual-circularly polarized antenna array for 5G wireless applications," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4930-4935, 2018. Google Scholar
86. Park, S. J. and S. O. Park, "LHCP and RHCP substrate integrated waveguide antenna arrays for millimeter-wave applications," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 601-604, 2016. Google Scholar
87. Du, M., J. Xu, X. Ding, J. Cao, J. Deng, and Y. Dong, "A low-profile wideband LTCC integrated circularly polarized helical antenna array for millimeter-wave applications," Radioengineering, Vol. 27, No. 1, 455-462, 2018. Google Scholar
88. Lin, W. and R. W. Ziolkowski, "Compact, omni-directional, circularly polarized mm-Wave antenna for device-to-device (D2D) communications in future 5G cellular systems," 2017 10th Global Symposium on Millimeter-Waves, 115-116, 2017. Google Scholar
89. Qing, X. and Z. N. Chen, "Millimeter-wave broadband circularly polarized stacked microstrip antenna for satellite applications," 2016 IEEE 5th Asia-Pacific Conference on Antennas and Propagation (APCAP), 341-342, 2016. Google Scholar
90. Mantash, M. and T. A. Denidni, "3D FSS polarizer for millimeter-wave antenna applications," Int. J. RF Microw. Comput.-Aided Engineering, Vol. 29, No. 8, e21767, 2019. Google Scholar
91. Hesari, S. S. and J. Bornemann, "Wideband circularly polarized substrate integrated waveguide end fire antenna system with high gain," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2262-2265, 2017. Google Scholar
92. Yoon, S. J. and J. H. Choi, "A Ka-band circular polarized waveguide slot antenna with a cross iris," Applied Sciences, Vol. 10, No. 19, e6994, 2020. Google Scholar
93. Zhang, K., J. Li, Y. Yang, and R. Xu, "A novel design of circularly polarized waveguide antenna," Proceedings of 2014 3rd IEEE Asia-Pacific Conference on Antennas and Propagation, 130-133, 2014. Google Scholar
94. Kesavan, A., M. A. Al-Hassan, I. Ben Mabrouk, and T. A. Denidni, "Wideband circular polarized dielectric resonator antenna array for millimeter-wave applications," Sensors, Vol. 21, No. 11, e3614, 2021. Google Scholar
95. Askari, H., N. Hussain, M. A. Sufian, S. M. Lee, and N. Kim, "A wideband circularly polarized magnetoelectric dipole antenna for 5G millimeter-wave communications," Sensors, Vol. 22, 2338, 2022. Google Scholar
96. Zhu, C., G. Xu, D. Ding, J. Wu, W. Wang, Z.-X. Hunag, and X.-L. Wu, "Low-profile wideband millimeter-wave circularly polarized antenna with hexagonal parasitic patches," IEEE Antennas Wirel. Propag. Lett., Vol. 20, No. 9, 1651-1655, 2021. Google Scholar
97. Khalid, M., S. IffatNaqvi, N. Hussain, M. Rahman, S. S. Mirjavadi, M. J. Khan, and Y. Amin, "4-port MIMO antenna with defected ground structure for 5G millimeter wave applications," Electronics, Vol. 9, No. 1, 71, 2020. Google Scholar
98. Christodoulou, C. G., Y. Tawk, S. A. Lane, and S. R. Erwin, "Reconfigurable antennas for wireless and space applications," Proceedings of the IEEE, Vol. 100, No. 6, 2250-2261, 2012. Google Scholar
99. Friis, H. T., C. B. Feldman, and W. M. Sharpless, "The determination of the direction of arrival of short radio waves," Proceedings of the Institute of Radio Engineers, Vol. 22, No. 1, 47-78, 1934. Google Scholar
100. Al Abbas, E., A. T. Mobashsher, and A. Abbosh, "Polarization reconfigurable antenna for 5G cellular networks operating at millimeter waves," 2017 IEEE Asia Pacific Microwave Conference (APMC), 772-774, 2017. Google Scholar
101. Brown, E. R., "RF-MEMS switches for reconfigurable integrated circuits," IEEE Trans. Microw. Theory and Techniques, Vol. 46, No. 11, 1868-1880, 1998. Google Scholar
102. Deng, Z., J. Gan, H. Wei, H. Gong, and X. Guo, "Ka-band radiation pattern reconfigurable antenna based on microstrip MEMS switches," Progress In Electromagnetics Research Letters, Vol. 59, 93-99, 2016. Google Scholar
103. Ikram, M., E. Al Abbas, N. Nguyen-Trong, K. H. Sayidmarie, and A. Abbosh, "Integrated frequency-reconfigurable slot antenna and connected slot antenna array for 4G and 5G mobile handsets," IEEE Trans. Antennas Propag., Vol. 67, No. 12, 7225-7233, 2019. Google Scholar
104. Anagnostou, D. E., G. Zheng, M. T. Chryssomallis, J. C. Lyke, G. E. Ponchak, J. Papapolymerou, and C. G. Christodoulou, "Design, fabrication, and measurements of an RF-MEMS-based self- similar reconfigurable antenna," IEEE Trans. Antennas Propag., Vol. 54, No. 1, 422-432, 2006. Google Scholar
105. Dufour, G., N. Tiercelin, W. T. Khan, P. Coquet, P. Pernod, and J. Papapolymerou, "Large frequency tuning of a millimeter-wave antenna using dielectric liquids in integrated micro-channels," 2015 IEEE MTT-S International Microwave Symposium, 1-4, 2015. Google Scholar
106. Jilani, S. F., S. M. Abbas, K. P. Esselle, and A. Alomainy, "Millimeter-wave frequency reconfigurable T-shaped antenna for 5G networks," 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 100-102, 2015. Google Scholar
107. Hassan, A. E. H., N. Fadlallah, M. Rammal, G. Z. El Nashef, and E. Rachid, "Wideband reconfigurable millimeter-wave linear array antenna using liquid crystal for 5G networks," Wireless Engineering and Technology, Vol. 12, No. 1, 1-14, 2021. Google Scholar
108. Al Abbas, E., N. Nguyen-Trong, A. T. Mobashsher, and A. M. Abbosh, "Polarization-reconfigurable antenna array for millimeter-wave 5G," IEEE Access, Vol. 7, 131214-131220, 2019. Google Scholar
109. Haupt, R. L. and M. Lanagan, "Reconfigurable antennas," IEEE Antennas Propag. Magazine, Vol. 55, No. 1, 49-61, 2013. Google Scholar
110. Lai, M. I., T. Y. Wu, J. C. Hsieh, C. H. Wang, and S. K. Jeng, "Design of reconfigurable antennas based on an L-shaped slot and PIN diodes for compact wireless devices," IET Microwaves, Antennas & Propagation, Vol. 3, No. 1, 47-54, 2009. Google Scholar
111. Weedon, W. H., W. J. Payne, and G. M. Rebeiz, "MEMS-switched reconfigurable antennas," IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio S, Vol. 3, 654-657, 2001. Google Scholar
112. Petosa, A., "An overview of tuning techniques for frequency-agile antennas," IEEE Antennas Propag. Magazine, Vol. 54, No. 4, 271-296, 2012. Google Scholar
113. Entesari, K. and A. P. Saghati, "Fluidics in microwave components," IEEE Microwave Magazine, Vol. 17, No. 5, 50-75, 2016. Google Scholar
114. Raymond, L., L. Nelson, D. Hamilton, and W. Kerwin, "Fabrication of passive components for high temperature instrumentation," IEEE Trans. Components, Hybrids, and Manufacturing Technology, Vol. 2, No. 3, 395-398, 1979. Google Scholar
115. Lakafosis, V., A. Rida, R. Vyas, L. Yang, S. Nikolaou, and M. M. Tentzeris, "Progress towards the first wireless sensor networks consisting of inkjet-printed, paper-based RFID-enabled sensor tags," Proceedings of the IEEE, Vol. 98, No. 9, 1601-1609, 2010. Google Scholar
116. Orecchini, G., F. Alimenti, V. Palazzari, A. Rida, M. M. Tentzeris, and L. Roselli, "Design and fabrication of ultra-low-cost radio frequency identification antennas and tags exploiting paper substrates and inkjet printing technology," IET Microwaves, Antennas & Propagation, Vol. 5, No. 8, 993-1001, 2011. Google Scholar
117. Gamota, D. R., P. Brazis, K. Kalyanasundaram, and J. Zhang, Printed Organic and Molecular Electronics, Springer Science & Business Media, 2013.
118., https://www.lpkf.com/en/industries-technologies/research-in-house-pcb-prototyping/produkte/-lpkf-protolaser-u4, 2017. Google Scholar
119. Jilani, S. F., A. Rahimian, Y. Alfadhl, and A. Alomainy, "Low-profile flexible frequency-reconfigurable millimeter-wave antenna for 5G applications," Flexible and Printed Electronics, Vol. 3, No. 2, 035003, 2018. Google Scholar
120. Tehrani, B., B. Cook, J. Cooper, and M. Tentzeris, "Inkjet printing of a wideband, high gain mm-wave Vivaldi antenna on a flexible organic substrate," 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI), 320-321, 2014. Google Scholar
121. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.
122. Shamim, A., L. Roy, N. Fong, and N. G. Tarr, "24 GHz on-chip antennas and balun on bulk Si for air transmission," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 303-311, 2008. Google Scholar
123., https://antennatestlab.com/antenna-education-tutorials/gain-dbi-passive-antenna. Google Scholar
124. Liu, C. C. and R. G. Rojas, "V-band integrated on-chip antenna implemented with a partially reflective surface in standard 0.13-μm BiCMOS technology," IEEE Trans. Antennas Propag., Vol. 64, No. 12, 5102-5109, 2016. Google Scholar
125. Jing, L., C. R. Rowell, S. Raju, M. Chan, R. D. Murch, and C. P. Yue, "Fabrication and measurement of millimeter-wave on-chip MIMO antenna for CMOS RFIC's," 2016 IEEE MTT-S International Wireless Symposium (IWS), 1-4, 2016. Google Scholar
126., https://api.ctia.org/wpcontent/uploads/2019/04/CTIAOTATest Plan 3 8 2.pdf, 2019. Google Scholar
127. Qi, Y., G. Yang, L. Liu, J. Fan, A. Orlandi, H. Kong, W. Yu, and Z. Yang, "5G over-the-air measurement challenges: Overview," IEEE Trans. Electromagnetic Compatibility, Vol. 59, No. 5, 1661-1670, 2017. Google Scholar
128. Li, J., Y. Qi, W. Yu, F. Li, J. Fan, A. Orlandi, Z. Yang, and S. Wu, "Objective MIMO measurement," IEEE Trans. Electromagnetic Compatibility, Vol. 60, No. 4, 1190-1197, 2018. Google Scholar
129. Yu, W., Y. Qi, K. Liu, Y. Xu, and J. Fan, "Radiated two-stage method for LTE MIMO user equipment performance evaluation," IEEE Trans. Electromagnetic Compatibility, Vol. 56, No. 5, 1691-1696, 2014. Google Scholar
130. Shen, P., Y. Qi, W. Yu, and F. Li, "Inverse matrix autosearch technique for the RTS MIMO OTA test," IEEE Trans. Electromagnetic Compatibility, Vol. 63, No. 3, 962-969, 2021. Google Scholar