Vol. 98
Latest Volume
All Volumes
PIERB 117 [2026] PIERB 116 [2026] PIERB 115 [2025] PIERB 114 [2025] PIERB 113 [2025] PIERB 112 [2025] PIERB 111 [2025] PIERB 110 [2025] PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-12-21
3-D Metamaterial Based Terahertz Planoconcave Lenses for Linearly and Circularly Polarized Waves
By
Progress In Electromagnetics Research B, Vol. 98, 21-37, 2023
Abstract
A three-dimensional negative index (NI) metamaterial (MTM) is realized at terahertz (THz) frequencies. The structure is comprised of orthogonally oriented cross-bars with arrows on each corner embedded in a dielectric cube. The proposed 3-D MTM is symmetric along all the principal axes and shows a polarization-insensitive, wide-incident-angle negative refractive index regime centered at 0.862 THz with an operational bandwidth of 0.234 THz (27.15{%}). Using staircase approximation, the proposed 3-D NI MTM has been designed into a THz parabolic planoconcave lens (PCL). A PCL made of a NI medium is a counterpart of a positive index planoconvex lens and focuses on the near-field region. The designed PCL shows 3-D focusing functionality for linearly and circularly polarized THz waves at 0.85 THz. The designed PCL has a short focal length and high numerical aperture (NA) with sub-wavelength focusing spot sizes. The computed FWHMs along transversal directions are 0.46λ(x) × 0.49λ(y) for transverse electric (TE) polarized wave, 0.46λ(x) × 0.49λ(y) for left-circularly polarized (LCP) wave and 0.50λ(x) × 0.42λ(y) for right-circularly polarized (RCP) wave, respectively. The corresponding back focal lengths of the realized PCLs are 1.07λ, 1.03λ and 0.98λ and the focal depths are 0.40λ, 0.48λ and 0.41λ for linear, LCP and RCP polarized waves, respectively. A short review of recent progress in manufacturing techniques for the fabrication of the proposed 3-D MTM is further highlighted. Since the proposed 3-D MTM PCL configurations show the far-field focusing of linearly/circularly polarized waves, imaging with high optical power requirements can be met for THz waveband applications.
Citation
Marishwari Muthusamy, Venkatachalam Subramanian, Zhengbiao Ouyang, and Natesan Yogesh, "3-D Metamaterial Based Terahertz Planoconcave Lenses for Linearly and Circularly Polarized Waves," Progress In Electromagnetics Research B, Vol. 98, 21-37, 2023.
doi:10.2528/PIERB22101305
References

1. Zhang, X. C., "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol., Vol. 47, No. 21, 3667-3677, 2002.
doi:10.1088/0031-9155/47/21/301        Google Scholar

2. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photonics Journal, Vol. 1, No. 2, 99-118, 2009.
doi:10.1109/JPHOT.2009.2026288        Google Scholar

3. Parrott, E. P. J., Y. Sun, and E. P. MacPherson, "Terahertz spectroscopy: Its future role in medical diagnoses," J. Mol. Struct., Vol. 1006, No. 1-3, 66-76, 2011.
doi:10.1016/j.molstruc.2011.05.048        Google Scholar

4. Hu, B. B. and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett., Vol. 20, No. 16, 1716-1718, 1995.
doi:10.1364/OL.20.001716        Google Scholar

5. Zimdars, D., J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, "Technology and applications of terahertz imaging non-destructive examination: Inspection of space shuttle sprayed on foam insulation," AIP Conf. Proc., Vol. 760, 570-577, 2005.
doi:10.1063/1.1916726        Google Scholar

6. Khorasaninejad, M., W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, Vol. 352, No. 6290, 1190-1194, 2016.
doi:10.1126/science.aaf6644        Google Scholar

7. Okatani, T., Y. Sunada, K. Hane, and Y. Kanamori, "Terahertz 3D bulk metamaterials with randomly dispersed split-ring resonators," Nanophotonics, Vol. 11, No. 9, 2065-2074, 2022.
doi:10.1515/nanoph-2021-0703        Google Scholar

8. Alex-Amor, A., A. Palomares-Caballero, and C. Molero, "3-D metamaterials: Trends on applied designs, computational methods and fabrication techniques," Electronics (MDPI), Vol. 1, 0, 2022.        Google Scholar

9. De Oliveira, J. J., L. D. Ribeiro, E. J. da Silva, and R. M. de Souza Batalha, "Design of a free space metamaterial lens based on LC parameters at S-band," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 16, 2210-2223, 2021.
doi:10.1080/09205071.2021.1934904        Google Scholar

10. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699        Google Scholar

11. Grbic, A. and G. V. Eleftheriades, "An isotropic three-dimensional negative-refractive-index transmission-line metamaterial," J. Appl. Phys., Vol. 98, 043106, 2005.
doi:10.1063/1.2007853        Google Scholar

12. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Extremely low frequency plasmons in metallic mesostructures," J. Phys. Condens. Lett., Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007        Google Scholar

13. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002        Google Scholar

14. Suzuki, T., M. Sekiya, T. Sato, and Y. Takebayashi, "Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband," Optics Express, Vol. 26, No. 7, 8314-8324, 2018.
doi:10.1364/OE.26.008314        Google Scholar

15. Gundogdu, T. F., N. Katsarakis, M. Kafesaki, R. S. Penciu, G. Konstantinidis, A. Kostopoulos, E. N. Economou, and C. M. Soukoulis, "Negative index short-slab pair and continuous wires metamaterials in the far infrared regime," Optics Express, Vol. 16, No. 12, 9173-9180, 2008.
doi:10.1364/OE.16.009173        Google Scholar

16. Wu, D., Y. Liu, L. Chen, R. Ma, C. Liu, C. Xiang, R. Li, and H. Ye, "Broadband mid-infrared dual-band double-negative metamaterial: Realized using a simple geometry," Plasmonics, Vol. 13, 1287-1295, 2018.
doi:10.1007/s11468-017-0632-z        Google Scholar

17. Moser, H. O., J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. bin Mahmood, and L. Wen, "Free-standing THz electromagnetic metamaterials," Opt. Express, Vol. 16, 13773-13780, 2008.
doi:10.1364/OE.16.013773        Google Scholar

18. Paul, O., C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Opt. Express, Vol. 16, No. 9, 6736-6744, 2008.
doi:10.1364/OE.16.006736        Google Scholar

19. Chang, C.-L., W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, "Tunable terahertz fishnet metamaterial," Appl. Phys. Lett., Vol. 102, 151903, 2013.
doi:10.1063/1.4801648        Google Scholar

20. Gu, J., J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, "A close-ring pair terahertz metamaterial resonating at normal incidence," Opt. Express, Vol. 17, 20307, 2009.
doi:10.1364/OE.17.020307        Google Scholar

21. Ling, F., Z. Zhong, R. Huang, and B. Zhang, "A broadband tunable terahertz negative refractive index metamaterial," Sci. Rep., Vol. 8, 9843, 2018.
doi:10.1038/s41598-018-28221-3        Google Scholar

22. Imhof, C. and R. Zengerle, "Strong birefringence in left-handed metallic metamaterials," Opt. Commun., Vol. 280, 213-216, 2007.
doi:10.1016/j.optcom.2007.07.033        Google Scholar

23. Yeh, T. T., T. Y. Huang, T. Tanaka, and T.-J. Yen, "Demonstration of a three-dimensional negative index medium operated at multiple-angle incidences by monolithic metallic hemispherical shells," Sci. Rep., Vol. 7, 45549, 2017.
doi:10.1038/srep45549        Google Scholar

24. Ding, J., S. An, B. Zheng, and H. L. Zhang, "Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths," Adv. Opt. Mater., Vol. 5, No. 10, 1700079, 2017.
doi:10.1002/adom.201700079        Google Scholar

25. Kim, J. and A. Gopinath, "Simulation of a metamaterial containing cubic high dielectric resonators," Phys. Rev. B, Vol. 76, 115126, 2007.
doi:10.1103/PhysRevB.76.115126        Google Scholar

26. Akmansoy, E. and S. Marcellin, "Negative index and mode coupling in all-dielectric metamaterials at terahertz frequencies," EPJ Appl. Metamat., Vol. 5, 2018.        Google Scholar

27. Koschny, Th., L. Zhang, and C. M. Soukoulis, "Isotropic three-dimensional left-handed metamaterials," Phys. Rev. B, Vol. 71, R121103, 2005.
doi:10.1103/PhysRevB.71.121103        Google Scholar

28. Cheng, Y. Z., Y. Nie, and R. Z. Gong, "Broadband 3D isotropic negative-index metamaterial based on fishnet structure," Eur. Phys. J. B, Vol. 85, 62, 2012.
doi:10.1140/epjb/e2011-20773-9        Google Scholar

29. Engheta, N. and R. W. Ziolkowski, Metamaterials --- Physics and Engineering Explorations, IEEE Press, 2006.

30. Beruete, M., M. Navarro-Cía, M. Sorolla, and I. Campillo, "Planoconcave lens by negative refraction of stacked subwavelength hole arrays," Opt. Express, Vol. 16, No. 13, 9677-9683, 2008.
doi:10.1364/OE.16.009677        Google Scholar

31. Vodo, P., P. V. Parimi, W. T. Lu, and S. Sridhar, "Focusing by planoconcave lens using negative refraction," Appl. Phys. Lett., Vol. 86, 201108, 2005.
doi:10.1063/1.1927712        Google Scholar

32. Naserpour, M., C. J. Zapata-Rodríguez, C. Díaz-Aviñό, and M. Hashemi, "Metacoatings for wavelength-scale, high-numerical-aperture plano-concave focusing lenses," J. Opt. Soc. Am. B, Vol. 33, 2120-2128, 2016.
doi:10.1364/JOSAB.33.002120        Google Scholar

33. Yin, S., Y. Liang, D. Zeng, Y. Tian, P. Zhong, L. Guo, W. Huang, and W. Zhang, "Dynamic switching of coaxial focus based on terahertz meta-lens," Appl. Opt., Vol. 60, 3629-3633, 2021.
doi:10.1364/AO.421906        Google Scholar

34. Legaria, S., J. Teniente, S. Kuznetsov, V. Pacheco-Peña, and M. Beruete, "Highly efficient focusing of terahertz waves with an ultrathin superoscillatory metalens: Experimental demonstration," Adv. Photonics Res., Vol. 2, 2000165, 2021.
doi:10.1002/adpr.202000165        Google Scholar

35. Fu, Z., "Near-field focusing with subwavelength thickness metalenses via electromagnetic susceptibility models," Optics and Photonics Journal, Vol. 11, 197-209, 2021.
doi:10.4236/opj.2021.117014        Google Scholar

36. Costanzo, S., A. Borgia, I. Venneri, and G. Di Massa, "Millimeter-waves structures on benzocyclobutene dielectric substrate," Radioengineering, Vol. 20, 785-789, 2011.        Google Scholar

37. Lee, D. H. and W. S. Park, "Extraction of effective permittivity and permeability of periodic metamaterial cells," Microw. Opt. Technol. Lett., Vol. 51, 1824-1830, 2009.        Google Scholar

38. Pacheco-Pena, V., B. Orazbayev, V. Torres, M. Beruete, and M. Navarro-Cıa, "Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial," Appl. Phys. Lett., Vol. 103, 183507, 2013.
doi:10.1063/1.4827876        Google Scholar

39. Pendry, B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966        Google Scholar

40. Hashemi, M., A. Moazami, M. Naserpour, and C. J. Zapata-Rodríguez, "A broadband multifocal metalens in the terahertz frequency range," Optics Communications, Vol. 370, 306-310, 2016.
doi:10.1016/j.optcom.2016.03.031        Google Scholar

41. Mendis, R., M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, "Terahertz artificial dielectric lens," Sci. Rep., Vol. 6, No. 1, 23023, 2016.
doi:10.1038/srep23023        Google Scholar

42. Jia, D., Y. Tian, W. Ma, X. Gong, J. Yu, G. Zhao, and X. Yu, "Transmissive terahertz metalens with full phase control based on a dielectric metasurface," Optics Letters, Vol. 42, No. 21, 4494-4497, 2017.
doi:10.1364/OL.42.004494        Google Scholar

43. Zhang, H., X. Zhang, Q. Xu, C. Tian, Q.Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, "High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation," Adv. Optical Mater., Vol. 1700773, 2017.        Google Scholar

44. Chen, H., Z. Wu, Z. Li, Z. Luo, X. Jiang, Z. Wen, L. Zhu, X. Zhou, H. Li, Z. Shang, Z. Zhang, K. Zhang, G. Liang, S. Jiang, L. Du, and G., "Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens," Opt. Express, Vol. 26, 29817-29825, 2018.
doi:10.1364/OE.26.029817        Google Scholar

45. Jiang, X., H. Chen, Z. Li, H. Yuan, L. Cao, Z. Luo, K. Zhang, Z. Zhang, Z. Wen, L.-G. Zhu, X. Zhou, G. Liang, D. Ruan, L. Du, L. Wang, and G. Chen, "All-dielectric metalens for terahertz wave imaging," Opt. Express, Vol. 26, 14132-14142, 2018.
doi:10.1364/OE.26.014132        Google Scholar

46. Cheng, Q., M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, "Broadband achromatic metalens in terahertz regime," Science Bulletin, Vol. 64, No. 20, 1525-1531, 2019.
doi:10.1016/j.scib.2019.08.004        Google Scholar

47. Zang, X., W. W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Y. Xie, A. V. Balakin, A. P. Shkurinov, Y. M. Zhu, and S. L. Zhuang, "Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging," Adv. Optical Mater., Vol. 8, 1901342, 2020.
doi:10.1002/adom.201901342        Google Scholar

48. Maruo, S. and J. Fourkas, "Recent progress in multiphoton microfabrication," Laser & Photon. Rev., Vol. 2, 100-111, 2008.
doi:10.1002/lpor.200710039        Google Scholar

49. Rill, M. S., C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials, Vol. 7, 543-546, 2008.
doi:10.1038/nmat2197        Google Scholar

50. Hernandez, D. S. and J. B. Shear, "Mask-directed micro-3D printing," Micro and Nano Technologies, Three-Dimensional Microfabrication Using Two-Photon Polymerization, William Andrew Publishing, 2020.        Google Scholar

51. Mao, Y., Z. Chen, J. Zhu, Y. Pan, W. Wu, and J. Xu, "Stereo metamaterial with three dimensional meta-atoms fabricated by programmable stress induced deformation for optical modulation," 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 285-288, 2017.
doi:10.1109/MEMSYS.2017.7863397        Google Scholar

52. Takano, K., T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, "Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer," Appl. Phys. Express, Vol. 3, 016701, 2010.
doi:10.1143/APEX.3.016701        Google Scholar

53. Wang, Q., B. Gao, M. Raglione, H. Wang, B. Li, F. Toor, M. A. Arnold, and H. Ding, "Design, fabrication, and modulation of THz bandpass metamaterials," Laser & Photonics Reviews, Vol. 13, 1900071, 2019.
doi:10.1002/lpor.201900071        Google Scholar

54. Huang, T.-Y., C.-W. Tseng, T.-T. Yeh, T.-T. Yeh, C.-W. Luo, T. Akalin, and T.-J. Yen, "Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process," Sci. Rep., Vol. 5, 18605, 2015.
doi:10.1038/srep18605        Google Scholar