1. Zhang, X. C., "Terahertz wave imaging: horizons and hurdles," Phys. Med. Biol., Vol. 47, No. 21, 3667-3677, 2002.
doi:10.1088/0031-9155/47/21/301 Google Scholar
2. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Photonics Journal, Vol. 1, No. 2, 99-118, 2009.
doi:10.1109/JPHOT.2009.2026288 Google Scholar
3. Parrott, E. P. J., Y. Sun, and E. P. MacPherson, "Terahertz spectroscopy: Its future role in medical diagnoses," J. Mol. Struct., Vol. 1006, No. 1-3, 66-76, 2011.
doi:10.1016/j.molstruc.2011.05.048 Google Scholar
4. Hu, B. B. and M. C. Nuss, "Imaging with terahertz waves," Opt. Lett., Vol. 20, No. 16, 1716-1718, 1995.
doi:10.1364/OL.20.001716 Google Scholar
5. Zimdars, D., J. A. Valdmanis, J. S. White, G. Stuk, S. Williamson, W. P. Winfree, and E. I. Madaras, "Technology and applications of terahertz imaging non-destructive examination: Inspection of space shuttle sprayed on foam insulation," AIP Conf. Proc., Vol. 760, 570-577, 2005.
doi:10.1063/1.1916726 Google Scholar
6. Khorasaninejad, M., W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science, Vol. 352, No. 6290, 1190-1194, 2016.
doi:10.1126/science.aaf6644 Google Scholar
7. Okatani, T., Y. Sunada, K. Hane, and Y. Kanamori, "Terahertz 3D bulk metamaterials with randomly dispersed split-ring resonators," Nanophotonics, Vol. 11, No. 9, 2065-2074, 2022.
doi:10.1515/nanoph-2021-0703 Google Scholar
8. Alex-Amor, A., A. Palomares-Caballero, and C. Molero, "3-D metamaterials: Trends on applied designs, computational methods and fabrication techniques," Electronics (MDPI), Vol. 1, 0, 2022. Google Scholar
9. De Oliveira, J. J., L. D. Ribeiro, E. J. da Silva, and R. M. de Souza Batalha, "Design of a free space metamaterial lens based on LC parameters at S-band," Journal of Electromagnetic Waves and Applications, Vol. 35, No. 16, 2210-2223, 2021.
doi:10.1080/09205071.2021.1934904 Google Scholar
10. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, 509, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
11. Grbic, A. and G. V. Eleftheriades, "An isotropic three-dimensional negative-refractive-index transmission-line metamaterial," J. Appl. Phys., Vol. 98, 043106, 2005.
doi:10.1063/1.2007853 Google Scholar
12. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Extremely low frequency plasmons in metallic mesostructures," J. Phys. Condens. Lett., Vol. 10, 4785-4809, 1998.
doi:10.1088/0953-8984/10/22/007 Google Scholar
13. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
14. Suzuki, T., M. Sekiya, T. Sato, and Y. Takebayashi, "Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband," Optics Express, Vol. 26, No. 7, 8314-8324, 2018.
doi:10.1364/OE.26.008314 Google Scholar
15. Gundogdu, T. F., N. Katsarakis, M. Kafesaki, R. S. Penciu, G. Konstantinidis, A. Kostopoulos, E. N. Economou, and C. M. Soukoulis, "Negative index short-slab pair and continuous wires metamaterials in the far infrared regime," Optics Express, Vol. 16, No. 12, 9173-9180, 2008.
doi:10.1364/OE.16.009173 Google Scholar
16. Wu, D., Y. Liu, L. Chen, R. Ma, C. Liu, C. Xiang, R. Li, and H. Ye, "Broadband mid-infrared dual-band double-negative metamaterial: Realized using a simple geometry," Plasmonics, Vol. 13, 1287-1295, 2018.
doi:10.1007/s11468-017-0632-z Google Scholar
17. Moser, H. O., J. A. Kong, L. K. Jian, H. S. Chen, G. Liu, M. Bahou, S. M. P. Kalaiselvi, S. M. Maniam, X. X. Cheng, B. I. Wu, P. D. Gu, A. Chen, S. P. Heussler, S. bin Mahmood, and L. Wen, "Free-standing THz electromagnetic metamaterials," Opt. Express, Vol. 16, 13773-13780, 2008.
doi:10.1364/OE.16.013773 Google Scholar
18. Paul, O., C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, "Negative index bulk metamaterial at terahertz frequencies," Opt. Express, Vol. 16, No. 9, 6736-6744, 2008.
doi:10.1364/OE.16.006736 Google Scholar
19. Chang, C.-L., W.-C. Wang, H.-R. Lin, F. J. Hsieh, Y.-B. Pun, and C.-H. Chan, "Tunable terahertz fishnet metamaterial," Appl. Phys. Lett., Vol. 102, 151903, 2013.
doi:10.1063/1.4801648 Google Scholar
20. Gu, J., J. Han, X. Lu, R. Singh, Z. Tian, Q. Xing, and W. Zhang, "A close-ring pair terahertz metamaterial resonating at normal incidence," Opt. Express, Vol. 17, 20307, 2009.
doi:10.1364/OE.17.020307 Google Scholar
21. Ling, F., Z. Zhong, R. Huang, and B. Zhang, "A broadband tunable terahertz negative refractive index metamaterial," Sci. Rep., Vol. 8, 9843, 2018.
doi:10.1038/s41598-018-28221-3 Google Scholar
22. Imhof, C. and R. Zengerle, "Strong birefringence in left-handed metallic metamaterials," Opt. Commun., Vol. 280, 213-216, 2007.
doi:10.1016/j.optcom.2007.07.033 Google Scholar
23. Yeh, T. T., T. Y. Huang, T. Tanaka, and T.-J. Yen, "Demonstration of a three-dimensional negative index medium operated at multiple-angle incidences by monolithic metallic hemispherical shells," Sci. Rep., Vol. 7, 45549, 2017.
doi:10.1038/srep45549 Google Scholar
24. Ding, J., S. An, B. Zheng, and H. L. Zhang, "Multiwavelength metasurfaces based on single-layer dual-wavelength meta-atoms: toward complete phase and amplitude modulations at two wavelengths," Adv. Opt. Mater., Vol. 5, No. 10, 1700079, 2017.
doi:10.1002/adom.201700079 Google Scholar
25. Kim, J. and A. Gopinath, "Simulation of a metamaterial containing cubic high dielectric resonators," Phys. Rev. B, Vol. 76, 115126, 2007.
doi:10.1103/PhysRevB.76.115126 Google Scholar
26. Akmansoy, E. and S. Marcellin, "Negative index and mode coupling in all-dielectric metamaterials at terahertz frequencies," EPJ Appl. Metamat., Vol. 5, 2018. Google Scholar
27. Koschny, Th., L. Zhang, and C. M. Soukoulis, "Isotropic three-dimensional left-handed metamaterials," Phys. Rev. B, Vol. 71, R121103, 2005.
doi:10.1103/PhysRevB.71.121103 Google Scholar
28. Cheng, Y. Z., Y. Nie, and R. Z. Gong, "Broadband 3D isotropic negative-index metamaterial based on fishnet structure," Eur. Phys. J. B, Vol. 85, 62, 2012.
doi:10.1140/epjb/e2011-20773-9 Google Scholar
29. Engheta, N. and R. W. Ziolkowski, Metamaterials --- Physics and Engineering Explorations, IEEE Press, 2006.
30. Beruete, M., M. Navarro-Cía, M. Sorolla, and I. Campillo, "Planoconcave lens by negative refraction of stacked subwavelength hole arrays," Opt. Express, Vol. 16, No. 13, 9677-9683, 2008.
doi:10.1364/OE.16.009677 Google Scholar
31. Vodo, P., P. V. Parimi, W. T. Lu, and S. Sridhar, "Focusing by planoconcave lens using negative refraction," Appl. Phys. Lett., Vol. 86, 201108, 2005.
doi:10.1063/1.1927712 Google Scholar
32. Naserpour, M., C. J. Zapata-Rodríguez, C. Díaz-Aviñό, and M. Hashemi, "Metacoatings for wavelength-scale, high-numerical-aperture plano-concave focusing lenses," J. Opt. Soc. Am. B, Vol. 33, 2120-2128, 2016.
doi:10.1364/JOSAB.33.002120 Google Scholar
33. Yin, S., Y. Liang, D. Zeng, Y. Tian, P. Zhong, L. Guo, W. Huang, and W. Zhang, "Dynamic switching of coaxial focus based on terahertz meta-lens," Appl. Opt., Vol. 60, 3629-3633, 2021.
doi:10.1364/AO.421906 Google Scholar
34. Legaria, S., J. Teniente, S. Kuznetsov, V. Pacheco-Peña, and M. Beruete, "Highly efficient focusing of terahertz waves with an ultrathin superoscillatory metalens: Experimental demonstration," Adv. Photonics Res., Vol. 2, 2000165, 2021.
doi:10.1002/adpr.202000165 Google Scholar
35. Fu, Z., "Near-field focusing with subwavelength thickness metalenses via electromagnetic susceptibility models," Optics and Photonics Journal, Vol. 11, 197-209, 2021.
doi:10.4236/opj.2021.117014 Google Scholar
36. Costanzo, S., A. Borgia, I. Venneri, and G. Di Massa, "Millimeter-waves structures on benzocyclobutene dielectric substrate," Radioengineering, Vol. 20, 785-789, 2011. Google Scholar
37. Lee, D. H. and W. S. Park, "Extraction of effective permittivity and permeability of periodic metamaterial cells," Microw. Opt. Technol. Lett., Vol. 51, 1824-1830, 2009. Google Scholar
38. Pacheco-Pena, V., B. Orazbayev, V. Torres, M. Beruete, and M. Navarro-Cıa, "Ultra-compact planoconcave zoned metallic lens based on the fishnet metamaterial," Appl. Phys. Lett., Vol. 103, 183507, 2013.
doi:10.1063/1.4827876 Google Scholar
39. Pendry, B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
40. Hashemi, M., A. Moazami, M. Naserpour, and C. J. Zapata-Rodríguez, "A broadband multifocal metalens in the terahertz frequency range," Optics Communications, Vol. 370, 306-310, 2016.
doi:10.1016/j.optcom.2016.03.031 Google Scholar
41. Mendis, R., M. Nagai, Y. Wang, N. Karl, and D. M. Mittleman, "Terahertz artificial dielectric lens," Sci. Rep., Vol. 6, No. 1, 23023, 2016.
doi:10.1038/srep23023 Google Scholar
42. Jia, D., Y. Tian, W. Ma, X. Gong, J. Yu, G. Zhao, and X. Yu, "Transmissive terahertz metalens with full phase control based on a dielectric metasurface," Optics Letters, Vol. 42, No. 21, 4494-4497, 2017.
doi:10.1364/OL.42.004494 Google Scholar
43. Zhang, H., X. Zhang, Q. Xu, C. Tian, Q.Wang, Y. Xu, Y. Li, J. Gu, Z. Tian, C. Ouyang, X. Zhang, C. Hu, J. Han, and W. Zhang, "High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation," Adv. Optical Mater., Vol. 1700773, 2017. Google Scholar
44. Chen, H., Z. Wu, Z. Li, Z. Luo, X. Jiang, Z. Wen, L. Zhu, X. Zhou, H. Li, Z. Shang, Z. Zhang, K. Zhang, G. Liang, S. Jiang, L. Du, and G., "Sub-wavelength tight-focusing of terahertz waves by polarization-independent high-numerical-aperture dielectric metalens," Opt. Express, Vol. 26, 29817-29825, 2018.
doi:10.1364/OE.26.029817 Google Scholar
45. Jiang, X., H. Chen, Z. Li, H. Yuan, L. Cao, Z. Luo, K. Zhang, Z. Zhang, Z. Wen, L.-G. Zhu, X. Zhou, G. Liang, D. Ruan, L. Du, L. Wang, and G. Chen, "All-dielectric metalens for terahertz wave imaging," Opt. Express, Vol. 26, 14132-14142, 2018.
doi:10.1364/OE.26.014132 Google Scholar
46. Cheng, Q., M. Ma, D. Yu, Z. Shen, J. Xie, J. Wang, N. Xu, H. Guo, W. Hu, S. Wang, T. Li, and S. Zhuang, "Broadband achromatic metalens in terahertz regime," Science Bulletin, Vol. 64, No. 20, 1525-1531, 2019.
doi:10.1016/j.scib.2019.08.004 Google Scholar
47. Zang, X., W. W. Xu, M. Gu, B. Yao, L. Chen, Y. Peng, J. Y. Xie, A. V. Balakin, A. P. Shkurinov, Y. M. Zhu, and S. L. Zhuang, "Polarization-insensitive metalens with extended focal depth and longitudinal high-tolerance imaging," Adv. Optical Mater., Vol. 8, 1901342, 2020.
doi:10.1002/adom.201901342 Google Scholar
48. Maruo, S. and J. Fourkas, "Recent progress in multiphoton microfabrication," Laser & Photon. Rev., Vol. 2, 100-111, 2008.
doi:10.1002/lpor.200710039 Google Scholar
49. Rill, M. S., C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nature Materials, Vol. 7, 543-546, 2008.
doi:10.1038/nmat2197 Google Scholar
50. Hernandez, D. S. and J. B. Shear, "Mask-directed micro-3D printing," Micro and Nano Technologies, Three-Dimensional Microfabrication Using Two-Photon Polymerization, William Andrew Publishing, 2020. Google Scholar
51. Mao, Y., Z. Chen, J. Zhu, Y. Pan, W. Wu, and J. Xu, "Stereo metamaterial with three dimensional meta-atoms fabricated by programmable stress induced deformation for optical modulation," 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS), 285-288, 2017.
doi:10.1109/MEMSYS.2017.7863397 Google Scholar
52. Takano, K., T. Kawabata, C.-F. Hsieh, K. Akiyama, F. Miyamaru, Y. Abe, Y. Tokuda, R.-P. Pan, C.-L. Pan, and M. Hangyo, "Fabrication of terahertz planar metamaterials using a super-fine ink-jet printer," Appl. Phys. Express, Vol. 3, 016701, 2010.
doi:10.1143/APEX.3.016701 Google Scholar
53. Wang, Q., B. Gao, M. Raglione, H. Wang, B. Li, F. Toor, M. A. Arnold, and H. Ding, "Design, fabrication, and modulation of THz bandpass metamaterials," Laser & Photonics Reviews, Vol. 13, 1900071, 2019.
doi:10.1002/lpor.201900071 Google Scholar
54. Huang, T.-Y., C.-W. Tseng, T.-T. Yeh, T.-T. Yeh, C.-W. Luo, T. Akalin, and T.-J. Yen, "Experimental realization of ultrathin, double-sided metamaterial perfect absorber at terahertz gap through stochastic design process," Sci. Rep., Vol. 5, 18605, 2015.
doi:10.1038/srep18605 Google Scholar