1. Annan, A. P, "Radio interferometry depth sounding: Part I --- Theoretical discussion," Geophysics, Vol. 38, No. 3, 557-580, Jun. 1973. [Online]. Available: https://doi.org/10.1190/1.1440360.
doi:10.1190/1.1440360 Google Scholar
2. Rossiter, J. R., G. A. LaTorraca, A. P. Annan, D. W. Strangway, and G. Simmons, "Radio interferometry depth sounding: Part II --- Experimental results," Geophysics, Vol. 38, No. 3, 581-599, Jun. 1973.
doi:10.1190/1.1440361 Google Scholar
3. Tsang, L., J. A. Kong, and G. Simmons, "Interference patterns of a horizon-tal electric dipole over layered dielectric media," Journal of Geophysical Re-search (1896-1977), Vol. 78, No. 17, 3287-3300, Jun. 1973. [Online]. Available: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/JB078i017p03287. Google Scholar
4. Liao, D. H. and K. Sarabandi, "Near-earth wave propagation characteristics of electric dipole in presence of vegetation or snow layer," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3747-3756, Nov. 2005.
doi:10.1109/TAP.2005.856347 Google Scholar
5. Kong, J., "Electromagnetic fields due to dipole antennas over stratied anisotropic media," Geophysics, Vol. 37, No. 6, 985-996, 1972.
doi:10.1190/1.1440321 Google Scholar
6. Chew, W. C. and J. A. Kong, "Electromagnetic eld of a dipole on a two-layer Earth," Geophysics, Vol. 46, No. 3, 309-315, Mar. 1981.
doi:10.1190/1.1441201 Google Scholar
7. Lee, J., A. J. Park, Y. Tanabe, A. S. Poon, and S. Kim, "A microwave method to remotely assess the abdominal fat thickness," AIP Advances, Vol. 11, No. 3, 035111, 2021.
doi:10.1063/5.0025865 Google Scholar
8. Shah, S. R. M., N. B. Asan, J. Velander, J. Ebrahimizadeh, M. D. Perez, V. Mattsson, T. Blokhuis, and R. Augustine, "Analysis of thickness variation in biological tissues using microwave sensors for health monitoring applications," IEEE Access, Vol. 7, 156 033-156 043, 2019.
doi:10.1109/ACCESS.2019.2949179 Google Scholar
9. Scharfetter, H., T. Schlager, R. Stollberger, R. Felsberger, H. Hutten, and H. Hinghofer-Szalkay, "Assessing abdominal fatness with local bioimpedance analysis: Basics and experimental ndings," International Journal of Obesity, Vol. 25, No. 4, 502-511, 2001.
doi:10.1038/sj.ijo.0801556 Google Scholar
10. Donelli, M., "A rescue radar system for the detection of victims trapped under rubble based on the independent component analysis algorithm," Progress In Electromagnetics Research M, Vol. 19, 173-181, 2011.
doi:10.2528/PIERM11061206 Google Scholar
11. Pasolli, E., F. Melgani, M. Donelli, R. Attoui, and M. De Vos, "Automatic detection and classication of buried objects in GPR images using genetic algorithms and support vector machines," IGARSS 2008 --- 2008 IEEE International Geoscience and Remote Sensing Symposium, Vol. 2, II-525, IEEE, 2008. Google Scholar
12. Pasolli, E., F. Melgani, and M. Donelli, "Gaussian process approach to buried object size estimation in GPR images," IEEE Geoscience and Remote Sensing Letters, Vol. 7, No. 1, 141-145, 2009.
doi:10.1109/LGRS.2009.2028697 Google Scholar
13. Alibakhshikenari, M., B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "Super-wide impedance bandwidth planar antenna for microwave and millimeter-wave applications," Sensors, Vol. 19, No. 10, 2306, 2019.
doi:10.3390/s19102306 Google Scholar
14. Alibakhshikenari, M., B. S. Virdee, C. H. See, P. Shukla, S. Salekzamankhani, R. A. Abd-Alhameed, F. Falcone, and E. Limiti, "Study on improvement of the performance parameters of a novel 0.41{ 0.47 THz on-chip antenna based on metasurface concept realized on 50 μm GAAS-layer," Scientic Reports, Vol. 10, No. 1, 11034, 2020.
doi:10.1038/s41598-020-68105-z Google Scholar
15. Altaf, A., A. Iqbal, A. Smida, J. Smida, A. A. Althuwayb, S. Hassan Kiani, M. Alibakhshikenari, F. Falcone, and E. Limiti, "Isolation improvement in UWB-MIMO antenna system using slotted stub," Electronics, Vol. 9, No. 10, 1582, 2020.
doi:10.3390/electronics9101582 Google Scholar
16. Alibakhshikenari, M., B. S. Virdee, P. Shukla, Y. Wang, L. Azpilicueta, M. Naser-Moghadasi, C. H. See, I. Elfergani, C. Zebiri, R. A. Abd-Alhameed, and et, "Impedance bandwidth improvement of a planar antenna based on metamaterial-inspired T-matching network," IEEE Access, Vol. 9, 67916-67927, 2021.
doi:10.1109/ACCESS.2021.3076975 Google Scholar
17. Kiourti, A., C. W. Lee, J. Chae, and J. L. Volakis, "A wireless fully passive neural recording device for unobtrusive neuropotential monitoring," IEEE Transactions on Biomedical Engineering, Vol. 63, No. 1, 131-137, 2015.
doi:10.1109/TBME.2015.2458583 Google Scholar
18. Lee, C. W., A. Kiourti, and J. L. Volakis, "Miniaturized fully passive brain implant for wireless neuropotential acquisition," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 645-648, 2016. Google Scholar
19. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2015.
20. Islam, M. S., S. Sha, M. I. Hasan, and M. A. Haque, "Low frequency near field interferometry for characterization of lossy dielectric and an investigation on sea ice," IEEE Transactions on Geoscience and Remote Sensing (Early Access), 1-11, 2020. Google Scholar
21. Trentini, G. V., "Partially reflecting sheet arrays," IRE Transactions on Antennas and Propagation, Vol. 4, No. 4, 666-671, 1956.
doi:10.1109/TAP.1956.1144455 Google Scholar
22. Islam, M. S., S. Sha, and M. A. Haque, "Development of an experimental model of low frequency dipole radiation in the presence of multilayered structures," SoutheastCon 2021, 1-6, IEEE, 2021. Google Scholar
23. Chollet, F., Deep Learning with Python, Simon and Schuster, 2021.
24. Heaton, J., "Ian Goodfellow, Yoshua Bengio, and Aaron Courville: Deep learning," Genetic Programming and Evolvable Machines, Vol. 19, 305-307, 2018.
doi:10.1007/s10710-017-9314-z Google Scholar
25. Gao, Y., H. Liu, X. Wang, and K. Zhang, "On an artificial neural network for inverse scattering problems," Journal of Computational Physics, Vol. 448, 110771, 2022.
doi:10.1016/j.jcp.2021.110771 Google Scholar
26. Zhang, P., P. Meng, W. Yin, and H. Liu, "A neural network method for time-dependent inverse source problem with limited-aperture data," Journal of Computational and Applied Mathematics, Vol. 421, 114842, 2023.
doi:10.1016/j.cam.2022.114842 Google Scholar
27. Yin, W., W. Yang, and H. Liu, "A neural network scheme for recovering scattering obstacles with limited phaseless far-field data," Journal of Computational Physics, Vol. 417, 109594, 2020.
doi:10.1016/j.jcp.2020.109594 Google Scholar
28. Yin, W., J. Ge, P. Meng, and F. Qu, "A neural network method for the inverse scattering problem of impenetrable cavities," Electronic Research Archive, Vol. 28, No. 2, 1123-1142, 2020.
doi:10.3934/era.2020062 Google Scholar
29. Islam, M. S., S. Sha, and M. A. Haque, "Low-frequency electromagnetic characterization of layered media using deep neural network," 2021 International Symposium on Antennas and Propagation (ISAP), 1-2, IEEE, 2021. Google Scholar
30. Stogryn, A., "Equations for calculating the dielectric constant of saline water (correspondence)," IEEE Transactions on Microwave Theory and Techniques, Vol. 19, No. 8, 733-736, 1971.
doi:10.1109/TMTT.1971.1127617 Google Scholar
31. Addison, J. R., "Electrical properties of saline ice," Journal of Applied Physics, Vol. 40, No. 8, 3105-3114, 1969.
doi:10.1063/1.1658149 Google Scholar
32. Stogryn, A., "An analysis of the tensor dielectnc constant of sea ice at microwave frequencies," IEEE Transactions on Geoscience and Remote Sensing, No. 2, 147-158, 1987.
doi:10.1109/TGRS.1987.289814 Google Scholar
33. Wentworth, F. and M. Cohn, "Electrical properties of sea ice at 0.1 to 30 mc/s," J. Res. NBS, Vol. 68, 681-691, 1964. Google Scholar
34. Evans, S., "Dielectric properties of ice and snow --- A review," Journal of Glaciology, Vol. 5, No. 42, 773-792, 1965.
doi:10.3189/S0022143000018840 Google Scholar
35. Buchanan, S., M. Ingham, and G. Gouws, "The low frequency electrical properties of sea ice," Journal of Applied Physics, Vol. 110, No. 7, 074908, 2011.
doi:10.1063/1.3647778 Google Scholar
36. Hallikainen, M. and D. P. Winebrenner, "The physical basis for sea ice remote sensing," Washington DC American Geophysical Union Geophysical Monograph Series, Vol. 68, 29-46, 1992. Google Scholar
37. Holt, B., P. Kanagaratnam, S. P. Gogineni, V. C. Ramasami, A. Mahoney, and V. Lytle, "Sea ice thickness measurements by ultrawideband penetrating radar: First results," Cold Regions Science and Technology, Vol. 55, No. 1, 33-46, 2009.
doi:10.1016/j.coldregions.2008.04.007 Google Scholar
38. Tilling, R. L., A. Ridout, and A. Shepherd, "Estimating arctic sea ice thickness and volume using cryosat-2 radar altimeter data," Advances in Space Research, Vol. 62, No. 6, 1203-1225, 2018, The CryoSat Satellite Altimetry Mission: Eight Years of Scientic Exploitation. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0273117717307901.
doi:10.1016/j.asr.2017.10.051 Google Scholar
39. Lindsay, R. and A. Schweiger, "Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations," The Cryosphere, Vol. 9, No. 1, 269-283, 2015.
doi:10.5194/tc-9-269-2015 Google Scholar
40. Schanda, E., Physical Fundamentals of Remote Sensing, Springer Science & Business Media, 2012.
41. Bourke, R. H. and R. P. Garrett, "Sea ice thickness distribution in the arctic ocean," Cold Regions Science and Technology, Vol. 13, No. 3, 259-280, 1987.
doi:10.1016/0165-232X(87)90007-3 Google Scholar
42. Eicken, H., W. Tucker, and D. Perovich, "Indirect measurements of the mass balance of summer arctic sea ice with an electromagnetic induction technique," Annals of Glaciology, Vol. 33, 194-200, 2001.
doi:10.3189/172756401781818356 Google Scholar
43. Thomas, D. and G. Dieckmann, "Sea Ice," 2nd Edition, Wiley-Blackwell, Jan. 2010. Google Scholar
44. Chew, W., Waves and Fields in Inhomogeneous Media, Springer, 1990.
45. Cheng, D. K., Field and Wave Electromagnetics, Pearson Education, India, 1989.
46. Wait, J. R., A. Cullen, V. Fock, J. Wait, and H. Hagger, "Electromagnetic waves in stratied media," Physics Today, Vol. 17, No. 4, 76, 1964.
doi:10.1063/1.3051553 Google Scholar
47. Jackson, J. D., Classical Electrodynamics, 1999.
48. Inc., C., "Comsol,", 2020. [Online]. Available: http://www.comsol.com/products/multiphysics/. Google Scholar
49. Klein, L. and C. Swift, "An improved model for the dielectric constant of sea water at microwave frequencies," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 1, 104-111, 1977.
doi:10.1109/TAP.1977.1141539 Google Scholar
50. Haque, M. A., M. S. Islam, S. Sha, M. Hasan, et al. "Non-invasive measurement of sea ice thickness using low frequency EM waves," Anyeshan Limited, Tech. Rep., 2022. Google Scholar