Vol. 99
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-03-21
A Novel Circularly Polarized Annular Slotted Multiband Rectenna for Low Power Sensor Applications
By
Progress In Electromagnetics Research B, Vol. 99, 103-119, 2023
Abstract
To overcome electronic device dependence on energy storage medium, current research proposes a novel multiband circularly polarized (CP), microstrip patch antenna with a voltage multiplier rectifier circuit for wireless energy harvesting. The proposed antenna is designed with a dimension of 50 mm × 50 mm × 0.16 mm (0.80λ × 0.80λ × 0.028λ). Its annular slot and slits on a circular patch along with a defective ground plane result in a miniaturized, circularly polarized, and multiband response with resonance peaks at 6.3 GHz, 7.4 GHz, and 9.1 GHz, respectively. The voltage multiplier rectifier circuit is designed, optimized, and integrated with the antenna for RF signals to DC power conversion in order to energize low-power sensors-based application modules. The simulated multiband antenna resonates at three frequencies of 6.3 GHz, 7.4 GHz and 9.1 GHz with obtained -10 dB impedance bandwidths of 282 MHz (6.276 GHz-6.549 GHz), 178 MHz (7.348 GHz-7.526 GHz), and 81 MHz (9.136 GHz-9.217 GHz), gain of 6.3 dBi, 10.28 dBi, and 7.9 dBi and axial ratio bandwidth of (6.297 GHz-6.302 GHz), (7.783 GHz-7.411 GHz) and (9.256 GHz-9.473 GHz), respectively. The prototype is fabricated, and its resonance peaks are observed at 6.2 GHz, 7.8 GHz and 9.3 GHz with impedance bandwidth of 195 MHz, 206 MHz and 230 MHz and gain of 6.3 dBi, 9.6 dBi, and 7.4 dBi, respectively. The rectifier circuit is analyzed over the power range -20 dBm to 20 dBm and exhibits an increase in the DC output power significantly with a maximum measured efficiency of 53.34% at a frequency of 7.4 GHz with an associated load resistance of 1 kΩ.
Citation
Neeru Kashyap, Geetanjali, and Dhawan Singh, "A Novel Circularly Polarized Annular Slotted Multiband Rectenna for Low Power Sensor Applications," Progress In Electromagnetics Research B, Vol. 99, 103-119, 2023.
doi:10.2528/PIERB22122606
References

1. Muncuk, U., K. Alemdar, J. D. Sarode, and K. R. Chowdhury, "Multiband ambient RF energy harvesting circuit design for enabling batteryless sensors and IoT," IEEE Internet of Things Journal, Vol. 5, No. 4, 2700-2714, 2018.
doi:10.1109/JIOT.2018.2813162

2. Elkorany, A. S., A. N. Mousa, S. Ahmad, D. A. Saleeb, A. Ghaffar, M. Soruri, and E. Limiti, "Implementation of a miniaturized planar tri-band microstrip patch antenna for wireless sensors in mobile applications," Sensors, Vol. 22, No. 2, 667, 2022.
doi:10.3390/s22020667

3. Azim, R., K. Dhar, M. S. Mia, and M. T. Islam, "Inset-fed microstrip patch antenna for ubiquitous wireless communication applications," International Journal of Ultra Wideband Communications and Systems, Vol. 5, No. 2, 57-64, 2022.
doi:10.1504/IJUWBCS.2022.123416

4. Khera, S., N. Turk, and N. Kaur, "Energy harvesting aspects of wireless sensor networks: A review," Int. J. Recent Innov. Trends Comput. Commun., Vol. 5, No. 5, 875-878, 2017.

5. Aga, N., N. Agasimani, C. D. Bhushanagoudra, A. Pawar, and S. Naduvinamani, "Review on energy harvesting sources," Indian Journal of Scienti c Research, 273-280, 2015.

6. Abdulhadi, A. E. and R. Abhari, "Multiport UHF RFID-tag antenna for enhanced energy harvesting of self-powered wireless sensors," IEEE Transactions on Industrial Informatics, Vol. 12, No. 2, 801-808, 2015.
doi:10.1109/TII.2015.2470538

7. Ibrahim, H. H., M. J. Singh, S. S. Al-Bawri, S. K. Ibrahim, M. T. Islam, A. Alzamil, and M. S. Islam, "Radio frequency energy harvesting technologies: A comprehensive review on designing, methodologies, and potential applications," Sensors, Vol. 22, No. 11, 4144, 2022.
doi:10.3390/s22114144

8. Elsheakh, D., "Microwave antennas for energy harvesting applications," Microwave Systems and Applications, IntechOpen, 2017.

9. Ullah, M. A., R. Keshavarz, M. Abolhasan, J. Lipman, K. P. Esselle, and N. Shariati, "A review on antenna technologies for ambient RF energy harvesting and wireless power transfer: Designs, challenges and applications," IEEE Access, 2022.

10. Al-Yasir, Y. I., N. O. Parchin, M. N. Fares, A. Abdulkhaleq, M. Sajedin, I. T. Elfergani, J. Rodriguez, and R. Abd-Alhameed, "New high-gain differential-fed dual-polarized ltering microstrip antenna for 5G applications," 2020 14th European Conference on Antennas and Propagation (EuCAP), IEEE, 2020.

11. Divakaran, S. K. and D. D. Krishna, "RF energy harvesting systems: An overview and design issues," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 29, No. 1, e21633, 2019.
doi:10.1002/mmce.21633

12. Singh, D. and V. M. Srivastava, "Polarization insensitive 3D cylindrical shaped frequency selective surface," 2017 10th International Conference on Developments in eSystems Engineering (DeSE), IEEE, 2017.

13. Ramalingam, L., S. Mariappan, P. Parameswaran, J. Rajendran, R. S. Nitesh, N. Kumar, and B. S. Yarman, "The advancement of radio frequency energy harvesters (RFEHs) as a revolutionary approach for solving energy crisis in wireless communication devices: A review," IEEE Access, Vol. 9, 106107-106139, 2021.
doi:10.1109/ACCESS.2021.3098895

14. Yusoff, S. S., S. A. Malik, and T. Ibrahim, "Simulation and performance analysis of a dual GSM band recti er circuit for ambient RF energy harvesting," Applications of Modelling and Simulation, Vol. 5, 125-133, 2021.

15. Tang, X., G. Xie, and Y. Cui, "Self-sustainable long-range backscattering communication using RF energy harvesting," IEEE Internet of Things Journal, Vol. 8, No. 17, 13737-13749, 2021.
doi:10.1109/JIOT.2021.3067948

16. Sun, H. and W. Geyi, "A new rectenna using beamwidth-enhanced antenna array for RF power harvesting applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1451-1454, 2016.

17. Kashyap, N. and D. Singh, "Multiband slotted circular microstrip patch antenna with enhanced bandwidth for satellite applications," 2022 International Mobile and Embedded Technology Conference (MECON), IEEE, 2022.

18. Surender, D., M. A. Halimi, T. Khan, F. A. Talukdar, S. K. Koul, and Y. M. Antar, "2.45 GHz Wi-Fi band operated circularly polarized rectenna for RF energy harvesting in smart city applications," Journal of Electromagnetic Waves and Applications, Vol. 36, No. 3, 407-423, 2022.
doi:10.1080/09205071.2021.1970030

19. Yadav, K., A. Chaturvedi, and G. K. Sharma, "Comparative study of antenna in RF-energy harvesting," 2022 2nd International Conference on Power Electronics & IoT Applications in Renewable Energy and Its Control (PARC), 1-7, IEEE, Jan. 2022.

20. Singh, M., D. Singh, G. Kumar, and R. Kumar, "A miniaturized and circularly polarized L-shaped slot antenna for ultra-wideband applications," International Journal of Recent Technology and Engineering (IJRTE), Vol. 8, No. 4, ISSN: 2277-3878, Nov. 2019.

21. Singla, G. and R. Khanna, "Double-ring multiband microstrip patch antenna with parasitic strip structure for heterogeneous wireless communication systems," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 8, 1757-1762, 2017.
doi:10.1017/S1759078717000502

22. Sah, B. K., G. Singla, and S. Sharma, "Design and development of enhanced bandwidth multi-frequency slotted antenna for 4G-LTE/WiMAX/WLAN and S/C/X-band applications," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 30, No. 7, e22214, 2020.
doi:10.1002/mmce.22214

23. Shen, S., C. Y. Chiu, and R. D. Murch, "A dual-port triple-band L-probe microstrip patch rectenna for ambient RF energy harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 3071-3074, 2017.
doi:10.1109/LAWP.2017.2761397

24. Zahra, W. and T. Djerafi, "Ambient RF energy harvesting for dual-band frequencies below 6 GHz," 2018 IEEE Wireless Power Transfer Conference (WPTC), 1-2, IEEE, Jun. 2018.

25. Vu, H. S., N. Nguyen, N. Ha-Van, C. Seo, and M. T. Le, "Multiband ambient RF energy harvesting for autonomous IoT devices," IEEE Microwave and Wireless Components Letters, Vol. 30, No. 12, 1189-1192, 2020.
doi:10.1109/LMWC.2020.3029869

26. Kulkarni, J., R. K. Gangwar, and J. Anguera, "Broadband and compact circularly polarized MIMO antenna with concentric rings and oval slots for 5G application," IEEE Access, Vol. 10, 29925-29936, 2022.
doi:10.1109/ACCESS.2022.3157914

27. Shen, S., Y. Zhang, C. Y. Chiu, and R. Murch, "An ambient RF energy harvesting system where the number of antenna ports is dependent on frequency," IEEE Transactions on Microwave Theory and Techniques, Vol. 67, No. 9, 3821-3832, 2019.
doi:10.1109/TMTT.2019.2906598

28. Kulkarni, J., C.-Y.-D. Sim, A. K. Poddar, U. L. Rohde, and A. G. Alharbi, "A compact circularly polarized rotated L-shaped antenna with J-shaped defected ground structure for WLAN and V2X applications," Progress In Electromagnetics Research Letters, Vol. 102, 135-143, 2022.
doi:10.2528/PIERL22010305

29. Agrawal, S., M. S. Parihar, and P. N. Kondekar, "A quad-band antenna for multi-band radio frequency energy harvesting circuit," AEU-International Journal of Electronics and Communications, Vol. 85, 99-107, 2018.

30. Pedram, K., J. Nourinia, C. Ghobadi, et al. "Compact and miniaturized metamaterial-based microstrip fractal antenna with recon gurable quali cation," AEU-International Journal of Electronics and Communications, Vol. 114, 152959, 2020.

31. Tran, H. H., N. Nguyen-Trong, and H. C. Park, "A compact dual circularly polarized antenna with wideband operation and high isolation," Journal of RF and Microwave Computer Aided Engg., 1-9, Feb. 2020.

32. Ghosh, S., "Design and testing of RF energy harvesting module in GSM 900 band using circularly polarized antenna," 2015 IEEE International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN), IEEE, 2015.

33. Garlapati, P., H. Chilaka, M. Rangu, R. Chigula, and S. Chilukuri, "A circularly polarized multiband multimode SIW antenna," 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 2020.

34. Mouapi, A., N. Hakem, and N. Kandil, "High efficiency rectifier for RF energy harvesting in the GSM band," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, IEEE, 2017.

35. Ali, W., H. Subbyal, L. Sun, and S. Shamoon, "Wireless energy harvesting using rectenna integrated with voltage multiplier circuit at 2.4 GHz operating frequency," Journal of Power and Energy Engineering, Vol. 10, No. 3, 22-34, 2022.
doi:10.4236/jpee.2022.103002

36. Elsheakh, D., M. Farouk, H. Elsadek, and H. Ghali, "Quad-band rectenna for RF energy harvesting system," Journal of Electromagnetic Analysis and Applications, Vol. 12, No. 5, 57-70, 2020.

37. Singh, N., B. K. Kanaujia, M. T. Beg, et al. "Low profile multiband rectenna for efficient energy harvesting at microwave frequencies," International Journal of Electronics, Vol. 106, No. 12, 2057-2071, 2019.
doi:10.1080/00207217.2019.1636302

38. Sun, H. and W. Geyi, "A new rectenna using beamwidth-enhanced antenna array for RF power harvesting applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1451-1454, 2017, doi: 10.1109/LAWP.2016.2642124.
doi:10.1109/LAWP.2016.2642124

39. Wong, K.-L., H. J. Chang, C. Y. Wang, and S. Y. Wang, "Very-low-profile grounded coplanar waveguide-fed dual-band WLAN slot antenna for on-body antenna application," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 1, 213-217, 2019.
doi:10.1109/LAWP.2019.2958961

40. Singh, N., B. K. Kanaujia, M. T. Beg, Mainuddin, S. Kumar, H. C. Choi, and K. W. Kim, "Low profile multiband rectenna for efficient energy harvesting at microwave frequencies," International Journal of Electronics, Vol. 106, No. 12, 2057-2071, Dec. 2019.
doi:10.1080/00207217.2019.1636302

41. Kanaya, H., S. Tsukamaoto, T. Hirabaru, D. Kanemoto, R. K. Pokharel, and K. Yoshida, "Energy harvesting circuit on a one-sided directional flexible antenna," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 3, 164-166, 2013.
doi:10.1109/LMWC.2013.2246779

42. Ho, D.-K., I. Kharrat, V. D. Ngo, T. P. Vuong, Q. C. Nguyen, and M. T. Le, "Dual-band rectenna for ambient RF energy harvesting at GSM 900MHz and 1800 MHz," 2016 IEEE International Conference on Sustainable Energy Technologies (ICSET), IEEE, 2016.