Vol. 100
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-06-24
Wideband and Compact Regular Shape Microstrip Antennas Employing Rectangular Slots Cut Bow-Tie Shape Ground Plane
By
Progress In Electromagnetics Research B, Vol. 100, 155-172, 2023
Abstract
Wide bandwidth compact rectangular and equilateral triangular microstrip antennas employing slots cut bow-tie shape ground plane profile are proposed. Amongst all the designs, patch employing three rectangular slots cut bow-tie shape ground plane yields optimum results. Using the rectangular patch, against conventional ground plane design, increase in bandwidth by 20%, resonance frequency, substrate thickness, and patch area reduction by 32%, 0.034λg, and 61.12%, are respectively achieved. In equilateral triangular patch design, a three rectangular slots cut bow-tie shape ground plane configuration shows bandwidth increase by 30%, and substrate thickness, fundamental mode frequency, and patch size reduction by 0.027λg, 16.4%, and 36.28%, respectively. Proposed designs exhibit broadside radiation pattern with broadside gain of above 5 dBi.
Citation
Amit A. Deshmukh, Abhijay Rane, Suraj Surendran, Yugantar Bhasin, and Venkata A. P. Chavali, "Wideband and Compact Regular Shape Microstrip Antennas Employing Rectangular Slots Cut Bow-Tie Shape Ground Plane," Progress In Electromagnetics Research B, Vol. 100, 155-172, 2023.
doi:10.2528/PIERB23042602
References

1. Garg, R., P. Bhartia, and I. Bahl, Microstrip Antenna Design Handbook, Artech House, London, 2001.

2. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, USA, 1980.

3. Deshmukh, A. A. and G. Kumar, "Compact broadband gap-coupled shorted square microstrip antennas," Microwave and Optical Technology Letters, Vol. 48, No. 7, 1261-1265, Jul. 2006.
doi:10.1002/mop.21671

4. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, London, 2003.

5. Wong, K. L., Compact and Broadband Microstrip Antennas, John Wiley and Sons, New York, 2002.
doi:10.1002/0471221112

6. Huynh, T. and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, No. 16, 1310-1312, Aug. 1995.
doi:10.1049/el:19950950

7. Wong, K. L. and W. H. Hsu, "A broadband rectangular patch antenna with pair of wide slits," IEEE Transaction on Antennas and Propagation, Vol. 49, No. 9, 1345-1347, Sep. 2001.
doi:10.1109/8.951507

8. S. K., L. Shafai, "Sharma," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 468-471, 2009.

9. Yoo, J. U. and H. W. Son, "A simple compact wideband microstrip antenna consisting of three staggered patches," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2038-2042, 2020.
doi:10.1109/LAWP.2020.3021491

10. Lu, H. X., F. Liu, M. Su, and Y. A. Liu, "Design and analysis of wideband U-slot patch antenna with U-shaped parasitic elements," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 2, e21202, 2018.
doi:10.1002/mmce.21202

11. Li, W. W., Q. H. Li, Y. Meng, J. Y. Wang, and W. M. Xu, "A broadband microstrip patch antenna with multiple open slots," Microwave and Optical Technology Letters, Vol. 61, No. 3, 626-632, 2019.
doi:10.1002/mop.31646

12. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2442-2447, 2010.
doi:10.1109/TAP.2010.2048850

13. Radavaram, S. and M. Pour, "Wideband radiation reconfigurable microstrip patch antenna loaded with two inverted U-slots," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1501-1508, 2018.
doi:10.1109/TAP.2018.2885433

14. Cao, Y., Y. Cai, W. Cao, B. Xi, Z. Qian, T. Wu, and L. Zhu, "Broadband and high-gain microstrip patch antenna loaded with parasitic Mushroom-type structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1405-1409, 2019.
doi:10.1109/LAWP.2019.2917909

15. Wen, J., D. Xie, and L. Zhu, "Bandwidth enhanced high-gain microstrip patch antenna under TM30 and TM50 dual-mode resonances," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1976-1980, 2019.
doi:10.1109/LAWP.2019.2935679

16. Kahani, K., M. Saikia, R. K. Jaiswal, S. Malik, and V. S. Kumar, "A compact, low-profile shorted TM1/2,0 mode planar copolarized microstrip antenna for full-duplex systems," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1887-1891, Sep. 2022.
doi:10.1109/LAWP.2022.3184163

17. Liu, S., Z. Wang, W. Sun, and Y. Dong, "A compact wideband pattern diversity antenna for 5GNR applications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1787-1791, Sep. 2022.
doi:10.1109/LAWP.2022.3179845

18. Chen, F., C. Feng, W. Chu, Y. Yue, X. Zhu, and W. Gu, "Design of a broadband high-gain omnidirectional antenna with low cross polarization based on characteristic mode theory," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1747-1751, Sep. 2022.
doi:10.1109/LAWP.2022.3179270

19. Balaji, U., "Bandwidth enhanced circular and annular ring sectoral patch antennas," Progress In Electromagnetics Research Letters, Vol. 84, 67-73, 2019.
doi:10.2528/PIERL19030507

20. Mondal, K. and P. P. Sarkar, "M-shaped broadband microstrip patch antenna with modified ground plane," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1308-1312, Jun. 2015.
doi:10.1002/mop.29068

21. Baudha, S. and M. V. Yadav, "A novel design of a planar antenna with modified patch and defective ground plane for ultra-wideband applications," Microwave and Optical Technology Letters, Vol. 61, No. 5, 1320-1327, May 2019.
doi:10.1002/mop.31716

22. Hota, S., S. Baudha, B. B.Mangaraj, and M. V. Yadav, "A compact, ultrawide band planar antenna with modified circular patch and a defective ground plane for multiple applications," Microwave and Optical Technology Letters, Vol. 61, No. 9, 2088-2097, Sep. 2019.
doi:10.1002/mop.31867

23. Mandal, K. and P. P. Sarkar, "High gain wide-band U-shaped patch antennas with modified ground planes," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 2279-2282, Jan. 2013.
doi:10.1109/TAP.2012.2233455

24. Kadam, P. A. and A. A. Deshmukh, "Variations of compact rectangular microstrip antennas using defected ground plane structure: Compact rectangular microstrip antennas," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 21, No. 2, 265-283, Jun. 2022.
doi:10.1590/2179-10742022v21i2256950

25., IE3D Version 12, Zeland Software.

26. Chavali, V. A. P. and A. A. Deshmukh, "Wideband designs of regular shape microstrip antennas using modified ground plane," Progress In Electromagnetics Research C, Vol. 117, 203-219, 2022.

27. Deshmukh, A. A., A. G. Ambekar, and V. A. P. Chavali, "Wideband designs of U-slot cut square microstrip antenna using modified ground plane profile," Progress In Electromagnetics Research C, Vol. 130, 1-14, 2023.
doi:10.2528/PIERC23010503

28. Deshmukh, A. A., V. A. P. Chavali, and A. G. Ambekar, "Thinner substrate designs of modified ground plane E-shape microstrip antennas for wideband response," Electromagnetics, Vol. 22, No. 4, 255-265, 2022.
doi:10.1080/02726343.2022.2099341