1. Garg, R., P. Bhartia, and I. Bahl, Microstrip Antenna Design Handbook, Artech House, London, 2001.
2. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, USA, 1980.
3. Deshmukh, A. A. and G. Kumar, "Compact broadband gap-coupled shorted square microstrip antennas," Microwave and Optical Technology Letters, Vol. 48, No. 7, 1261-1265, Jul. 2006.
doi:10.1002/mop.21671 Google Scholar
4. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, London, 2003.
5. Wong, K. L., Compact and Broadband Microstrip Antennas, John Wiley and Sons, New York, 2002.
doi:10.1002/0471221112
6. Huynh, T. and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, No. 16, 1310-1312, Aug. 1995.
doi:10.1049/el:19950950 Google Scholar
7. Wong, K. L. and W. H. Hsu, "A broadband rectangular patch antenna with pair of wide slits," IEEE Transaction on Antennas and Propagation, Vol. 49, No. 9, 1345-1347, Sep. 2001.
doi:10.1109/8.951507 Google Scholar
8. S. K., L. Shafai, "Sharma," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 468-471, 2009. Google Scholar
9. Yoo, J. U. and H. W. Son, "A simple compact wideband microstrip antenna consisting of three staggered patches," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2038-2042, 2020.
doi:10.1109/LAWP.2020.3021491 Google Scholar
10. Lu, H. X., F. Liu, M. Su, and Y. A. Liu, "Design and analysis of wideband U-slot patch antenna with U-shaped parasitic elements," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 2, e21202, 2018.
doi:10.1002/mmce.21202 Google Scholar
11. Li, W. W., Q. H. Li, Y. Meng, J. Y. Wang, and W. M. Xu, "A broadband microstrip patch antenna with multiple open slots," Microwave and Optical Technology Letters, Vol. 61, No. 3, 626-632, 2019.
doi:10.1002/mop.31646 Google Scholar
12. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2442-2447, 2010.
doi:10.1109/TAP.2010.2048850 Google Scholar
13. Radavaram, S. and M. Pour, "Wideband radiation reconfigurable microstrip patch antenna loaded with two inverted U-slots," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1501-1508, 2018.
doi:10.1109/TAP.2018.2885433 Google Scholar
14. Cao, Y., Y. Cai, W. Cao, B. Xi, Z. Qian, T. Wu, and L. Zhu, "Broadband and high-gain microstrip patch antenna loaded with parasitic Mushroom-type structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1405-1409, 2019.
doi:10.1109/LAWP.2019.2917909 Google Scholar
15. Wen, J., D. Xie, and L. Zhu, "Bandwidth enhanced high-gain microstrip patch antenna under TM30 and TM50 dual-mode resonances," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1976-1980, 2019.
doi:10.1109/LAWP.2019.2935679 Google Scholar
16. Kahani, K., M. Saikia, R. K. Jaiswal, S. Malik, and V. S. Kumar, "A compact, low-profile shorted TM1/2,0 mode planar copolarized microstrip antenna for full-duplex systems," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1887-1891, Sep. 2022.
doi:10.1109/LAWP.2022.3184163 Google Scholar
17. Liu, S., Z. Wang, W. Sun, and Y. Dong, "A compact wideband pattern diversity antenna for 5GNR applications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1787-1791, Sep. 2022.
doi:10.1109/LAWP.2022.3179845 Google Scholar
18. Chen, F., C. Feng, W. Chu, Y. Yue, X. Zhu, and W. Gu, "Design of a broadband high-gain omnidirectional antenna with low cross polarization based on characteristic mode theory," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1747-1751, Sep. 2022.
doi:10.1109/LAWP.2022.3179270 Google Scholar
19. Balaji, U., "Bandwidth enhanced circular and annular ring sectoral patch antennas," Progress In Electromagnetics Research Letters, Vol. 84, 67-73, 2019.
doi:10.2528/PIERL19030507 Google Scholar
20. Mondal, K. and P. P. Sarkar, "M-shaped broadband microstrip patch antenna with modified ground plane," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1308-1312, Jun. 2015.
doi:10.1002/mop.29068 Google Scholar
21. Baudha, S. and M. V. Yadav, "A novel design of a planar antenna with modified patch and defective ground plane for ultra-wideband applications," Microwave and Optical Technology Letters, Vol. 61, No. 5, 1320-1327, May 2019.
doi:10.1002/mop.31716 Google Scholar
22. Hota, S., S. Baudha, B. B.Mangaraj, and M. V. Yadav, "A compact, ultrawide band planar antenna with modified circular patch and a defective ground plane for multiple applications," Microwave and Optical Technology Letters, Vol. 61, No. 9, 2088-2097, Sep. 2019.
doi:10.1002/mop.31867 Google Scholar
23. Mandal, K. and P. P. Sarkar, "High gain wide-band U-shaped patch antennas with modified ground planes," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 2279-2282, Jan. 2013.
doi:10.1109/TAP.2012.2233455 Google Scholar
24. Kadam, P. A. and A. A. Deshmukh, "Variations of compact rectangular microstrip antennas using defected ground plane structure: Compact rectangular microstrip antennas," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 21, No. 2, 265-283, Jun. 2022.
doi:10.1590/2179-10742022v21i2256950 Google Scholar
25., IE3D Version 12, Zeland Software.
26. Chavali, V. A. P. and A. A. Deshmukh, "Wideband designs of regular shape microstrip antennas using modified ground plane," Progress In Electromagnetics Research C, Vol. 117, 203-219, 2022. Google Scholar
27. Deshmukh, A. A., A. G. Ambekar, and V. A. P. Chavali, "Wideband designs of U-slot cut square microstrip antenna using modified ground plane profile," Progress In Electromagnetics Research C, Vol. 130, 1-14, 2023.
doi:10.2528/PIERC23010503 Google Scholar
28. Deshmukh, A. A., V. A. P. Chavali, and A. G. Ambekar, "Thinner substrate designs of modified ground plane E-shape microstrip antennas for wideband response," Electromagnetics, Vol. 22, No. 4, 255-265, 2022.
doi:10.1080/02726343.2022.2099341 Google Scholar