1. Garg, R., P. Bhartia, and I. Bahl, Microstrip Antenna Design Handbook, Artech House, London, 2001.
2. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, USA, 1980.
3. Deshmukh, A. A. and G. Kumar, "Compact broadband gap-coupled shorted square microstrip antennas," Microwave and Optical Technology Letters, Vol. 48, No. 7, 1261-1265, Jul. 2006.
doi:10.1002/mop.21671
4. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House, London, 2003.
5. Wong, K. L., Compact and Broadband Microstrip Antennas, John Wiley and Sons, New York, 2002.
doi:10.1002/0471221112
6. Huynh, T. and K. F. Lee, "Single-layer single-patch wideband microstrip antenna," Electronics Letters, Vol. 31, No. 16, 1310-1312, Aug. 1995.
doi:10.1049/el:19950950
7. Wong, K. L. and W. H. Hsu, "A broadband rectangular patch antenna with pair of wide slits," IEEE Transaction on Antennas and Propagation, Vol. 49, No. 9, 1345-1347, Sep. 2001.
doi:10.1109/8.951507
8. S. K., L. Shafai, "Sharma," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 468-471, 2009.
9. Yoo, J. U. and H. W. Son, "A simple compact wideband microstrip antenna consisting of three staggered patches," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 12, 2038-2042, 2020.
doi:10.1109/LAWP.2020.3021491
10. Lu, H. X., F. Liu, M. Su, and Y. A. Liu, "Design and analysis of wideband U-slot patch antenna with U-shaped parasitic elements," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 28, No. 2, e21202, 2018.
doi:10.1002/mmce.21202
11. Li, W. W., Q. H. Li, Y. Meng, J. Y. Wang, and W. M. Xu, "A broadband microstrip patch antenna with multiple open slots," Microwave and Optical Technology Letters, Vol. 61, No. 3, 626-632, 2019.
doi:10.1002/mop.31646
12. Chen, Y., S. Yang, and Z. Nie, "Bandwidth enhancement method for low profile E-shaped microstrip patch antennas," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2442-2447, 2010.
doi:10.1109/TAP.2010.2048850
13. Radavaram, S. and M. Pour, "Wideband radiation reconfigurable microstrip patch antenna loaded with two inverted U-slots," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 3, 1501-1508, 2018.
doi:10.1109/TAP.2018.2885433
14. Cao, Y., Y. Cai, W. Cao, B. Xi, Z. Qian, T. Wu, and L. Zhu, "Broadband and high-gain microstrip patch antenna loaded with parasitic Mushroom-type structure," IEEE Antennas and Wireless Propagation Letters, Vol. 18, No. 7, 1405-1409, 2019.
doi:10.1109/LAWP.2019.2917909
15. Wen, J., D. Xie, and L. Zhu, "Bandwidth enhanced high-gain microstrip patch antenna under TM30 and TM50 dual-mode resonances," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1976-1980, 2019.
doi:10.1109/LAWP.2019.2935679
16. Kahani, K., M. Saikia, R. K. Jaiswal, S. Malik, and V. S. Kumar, "A compact, low-profile shorted TM1/2,0 mode planar copolarized microstrip antenna for full-duplex systems," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1887-1891, Sep. 2022.
doi:10.1109/LAWP.2022.3184163
17. Liu, S., Z. Wang, W. Sun, and Y. Dong, "A compact wideband pattern diversity antenna for 5GNR applications," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1787-1791, Sep. 2022.
doi:10.1109/LAWP.2022.3179845
18. Chen, F., C. Feng, W. Chu, Y. Yue, X. Zhu, and W. Gu, "Design of a broadband high-gain omnidirectional antenna with low cross polarization based on characteristic mode theory," IEEE Antennas and Wireless Propagation Letters, Vol. 21, No. 9, 1747-1751, Sep. 2022.
doi:10.1109/LAWP.2022.3179270
19. Balaji, U., "Bandwidth enhanced circular and annular ring sectoral patch antennas," Progress In Electromagnetics Research Letters, Vol. 84, 67-73, 2019.
doi:10.2528/PIERL19030507
20. Mondal, K. and P. P. Sarkar, "M-shaped broadband microstrip patch antenna with modified ground plane," Microwave and Optical Technology Letters, Vol. 57, No. 6, 1308-1312, Jun. 2015.
doi:10.1002/mop.29068
21. Baudha, S. and M. V. Yadav, "A novel design of a planar antenna with modified patch and defective ground plane for ultra-wideband applications," Microwave and Optical Technology Letters, Vol. 61, No. 5, 1320-1327, May 2019.
doi:10.1002/mop.31716
22. Hota, S., S. Baudha, B. B.Mangaraj, and M. V. Yadav, "A compact, ultrawide band planar antenna with modified circular patch and a defective ground plane for multiple applications," Microwave and Optical Technology Letters, Vol. 61, No. 9, 2088-2097, Sep. 2019.
doi:10.1002/mop.31867
23. Mandal, K. and P. P. Sarkar, "High gain wide-band U-shaped patch antennas with modified ground planes," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 4, 2279-2282, Jan. 2013.
doi:10.1109/TAP.2012.2233455
24. Kadam, P. A. and A. A. Deshmukh, "Variations of compact rectangular microstrip antennas using defected ground plane structure: Compact rectangular microstrip antennas," Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 21, No. 2, 265-283, Jun. 2022.
doi:10.1590/2179-10742022v21i2256950
25., IE3D Version 12, Zeland Software.
26. Chavali, V. A. P. and A. A. Deshmukh, "Wideband designs of regular shape microstrip antennas using modified ground plane," Progress In Electromagnetics Research C, Vol. 117, 203-219, 2022.
27. Deshmukh, A. A., A. G. Ambekar, and V. A. P. Chavali, "Wideband designs of U-slot cut square microstrip antenna using modified ground plane profile," Progress In Electromagnetics Research C, Vol. 130, 1-14, 2023.
doi:10.2528/PIERC23010503
28. Deshmukh, A. A., V. A. P. Chavali, and A. G. Ambekar, "Thinner substrate designs of modified ground plane E-shape microstrip antennas for wideband response," Electromagnetics, Vol. 22, No. 4, 255-265, 2022.
doi:10.1080/02726343.2022.2099341