1. Inan, Umran S. and Robert A. Marshall, Numerical Electromagnetics: The FDTD Method, Cambridge University Press, 2011.
doi:10.1017/CBO9780511921353
2. Sankaran, Krishnaswamy, "Are you using the right tools in computational electromagnetics?," Engineering Reports, Vol. 1, No. 3, e12041, 2019. Google Scholar
3. Jin, Jian-Ming, The Finite Element Method in Electromagnetics, John Wiley & Sons, 2015.
4. Zwamborn, Peter and Peter M. Van Den Berg, "The three dimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, No. 9, 1757-1766, 1992. Google Scholar
5. Bojarski, Norbert N., "The k‐space formulation of the scattering problem in the time domain," The Journal of the Acoustical Society of America, Vol. 72, No. 2, 570-584, 1982.
doi:10.1121/1.388038 Google Scholar
6. Van Beurden, Martijn C., "Fast convergence with spectral volume integral equation for crossed block-shaped gratings with improved material interface conditions," Journal of the Optical Society of America A, Vol. 28, No. 11, 2269-2278, 2011. Google Scholar
7. Dilz, Roeland Johannes and Martijn Constant van Beurden, "An efficient spatial spectral integral-equation method for EM scattering from finite objects in layered media," 2016 International Conference on Electromagnetics in Advanced Applications (ICEAA), 509-511, Cairns, QLD, Australia, Sep. 2016.
8. Dilz, R. J. and M. C. van Beurden, "An efficient complex spectral path formulation for simulating the 2D TE scattering problem in a layered medium using Gabor frames," Journal of Computational Physics, Vol. 345, 528-542, 2017.
doi:10.1016/j.jcp.2017.05.034 Google Scholar
9. Dilz, Roeland Johannes and Martijn Constant van Beurden, "A Hermite-interpolation discretization and a uniform path deformation for the spatial spectral domain integral equation method in multilayered media for TE polarization," Progress In Electromagnetics Research B, Vol. 80, 37-57, 2018. Google Scholar
10. Michalski, Krzysztof A. and Juan R. Mosig, "Efficient computation of Sommerfeld integral tails --- Methods and algorithms," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 3, 281-317, 2016. Google Scholar
11. Sommerfeld, Arnold, "Über die Ausbreitung der Wellen inder drahtlosen Telegraphie," Annalen Der Physik, Vol. 333, 665-736, 1909.
doi:10.1002/andp.19093330402 Google Scholar
12. Michalski, K. A. and J. R. Mosig, "The Sommerfeld half-space problem revisited: From radio frequencies and Zenneck waves to visible light and Fano modes," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 1, 1-42, 2016. Google Scholar
13. Ewald, Paul P., "Die Berechnung optischer und elektrostatischer Gitterpotentiale," Annalen Der Physik, Vol. 369, No. 3, 253-287, 1921. Google Scholar
14. Jordan, Kirk E., Gerard R. Richter, and Ping Sheng, "An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures," Journal of Computational Physics, Vol. 63, No. 1, 222-235, 1986. Google Scholar
15. Dilz, Roeland J., Mark G. M. M. van Kraaij, and Martijn C. van Beurden, "A 3D spatial spectral integral equation method for electromagnetic scattering from finite objects in a layered medium," Optical and Quantum Electronics, Vol. 50, No. 5, 206, 2018. Google Scholar
16. Waterman, P. C., "The T-matrix revisited," Journal of the Optical Society of America A, Vol. 24, No. 8, 2257-2267, Aug. 2007. Google Scholar
17. Richmond, Jack, "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Transactions on Antennas and Propagation, Vol. 13, No. 3, 334-341, 1965. Google Scholar
18. Hunter, J. D., "Matplotlib: A 2D graphics environment," Computing in Science & Engineering, Vol. 9, No. 3, 90-95, 2007.
doi:10.1109/MCSE.2007.55 Google Scholar
19. Abramowitz, Milton and Irene A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Vol. 55, US Government Printing Office, 1968.
20. Eijsvogel, Stefan, Ligang Sun, Fahimeh Sepehripour, R. J. Dilz, and Martijn C. van Beurden, "Describing discontinuous finite 3D scattering objects in Gabor coefficients: Fast and accurate methods," Journal of the Optical Society of America A, Vol. 39, No. 1, 86-97, 2022. Google Scholar
21. Saad, Youcef and Martin H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 7, No. 3, 856-869, 1986. Google Scholar
22. Van de Water, Albertus Maria, "LEGO: Linear embedding via Green's operators," Ph.D. dissertation, Phd Thesis 1 (Research TU/e/Graduation TU/e), Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands, 2007.