Vol. 84
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2019-07-17
Full Wave Indoor Propagation Modelling Using the Volume Integral Equation
By
Progress In Electromagnetics Research B, Vol. 84, 171-187, 2019
Abstract
The transition towards next generation communications has increased the need for fast and accurate propagation models that can predict all aspects of the wireless channel. This paper develops a very accurate approach for indoor propagation modelling based on the volume electric field integral equation (VEFIE). The three-dimensional form of the VEFIE is used to predict frequency domain characteristics. Whilst, a 2D to 3D model is developed based on the 2D VEFIE to perform accurate and efficient time domain predictions. The 2D to 3D model applies correction terms to the solution of the 2D VEFIE to account for three-dimensional propagation. Both models are compared against frequency and time domain measurements as well as popular empirical models for both scenarios.
Citation
Ian Kavanagh, and Conor Brennan, "Full Wave Indoor Propagation Modelling Using the Volume Integral Equation," Progress In Electromagnetics Research B, Vol. 84, 171-187, 2019.
doi:10.2528/PIERB19041808
References

1. Zhang, J., G. De la Roche, et al. Femtocells: Technologies and Deployment, Wiley Online Library, 2010.
doi:10.1002/9780470686812

2. Saunders, S. and A. Aragon-Zavala, Antennas and Propagation for Wireless Communication Systems, John Wiley & Sons, 2007.

3. Rappaport, T. S., Wireless Communications: Principles and Practice, Vol. 2, Prentice Hall PTR, 1996.

4. Pedersen, G. F., COST 231 — Digital Mobile Radio towards Future Generation Systems, EU, 1999.

5. Motley, A. J. and J. M. P. Keenan, "Personal communication radio coverage in buildings at 900 MHz and 1700 MHz," Electronics Letters, Vol. 24, No. 12, 763-764, Jun. 1988.
doi:10.1049/el:19880515

6. Rappaport, T. S., S. Y. Seidel, and K. Takamizawa, "Statistical channel impulse response models for factory and open plan building radio communicate system design," IEEE Transactions on Communications, Vol. 39, No. 5, 794-807, May 1991.
doi:10.1109/26.87142

7. De Adana, F. S., O. G. Blanco, I. G. Diego, J. P. Arriaga, and M. F. Catedra, "Propagation model based on ray tracing for the design of personal communication systems in indoor environments," IEEE Transactions on Vehicular Technology, Vol. 49, No. 6, 2105-2112, Nov. 2000.
doi:10.1109/25.901882

8. Ament, W. S., "Toward a theory of re ection by a rough surface," Proceedings of the IRE, Vol. 41, No. 1, 142-146, Jan. 1953.
doi:10.1109/JRPROC.1953.274171

9. Degli-Esposti, V., "A diffuse scattering model for urban propagation prediction," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 7, 1111-1113, Jul. 2001.
doi:10.1109/8.933491

10. Degli-Esposti, V., D. Guiducci, A. de'Marsi, P. Azzi, and F. Fuschini, "An advanced field prediction model including diffuse scattering," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 7, 1717-1728, Jul. 2004.
doi:10.1109/TAP.2004.831299

11. Zhai, M.-L., W.-Y. Yin, Z. D. Chen, H. Nie, and X.-H. Wang, "Modeling of ultra-wideband indoor channels with the modified leapfrog ADI-FDTD method," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 28, No. 1, 50-64, 2015.
doi:10.1002/jnm.1983

12. Alighanbari, A. and C. D. Sarris, "Rigorous and efficient time-domain modeling of electromagnetic wave propagation and fading statistics in indoor wireless channels," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2373-2381, Aug. 2007.
doi:10.1109/TAP.2007.901992

13. Lim, C.-P., J. L. Volakis, K. Sertel, R. W. Kindt, and A. Anastasopoulos, "Indoor propagation models based on rigorous methods for site-specific multipath environments," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1718-1725, Jun. 2006.
doi:10.1109/TAP.2006.875493

14. De la Roche, G. and J. M. Gorce, "A 3D formulation of MR-FDPF for simulating indoor radio propagation," 2006 First European Conference on Antennas and Propagation, 1-6, Nov. 2006.

15. De la Roche, G., J. M. Gorcey, and J. Zhang, "Optimized implementation of the 3D MR-FDPF method for indoor radio propagation predictions," 2009 3rd European Conference on Antennas and Propagation, 2241-2245, Mar. 2009.

16. Pham-Xuan, V., I. Kavanagh, M. Condon, and C. Brennan, "On comparison of integral equation approaches for indoor wave propagation," 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 796-799, Aug. 2014.
doi:10.1109/APWC.2014.6905587

17. Kavanagh, I., "Developing a method of moments based indoor propagation model," EUROCON 2015 — International Conference on Computer as a Tool (EUROCON), Vol. 1, No. 2, 1-6, IEEE, Sep. 2015.

18. Lu, C. C., "Indoor radio-wave propagation modeling by multilevel fast multipole algorithm," Microwave and Optical Technology Letters, Vol. 29, No. 3, 168-175, 2001.
doi:10.1002/mop.1119

19. Zhang, Z. Q., Q. H. Liu, C. Xiao, E. Ward, G. Ybarra, and W. T. Joines, "Microwave breast imaging: 3-D forward scattering simulation," IEEE Transactions on Biomedical Engineering, Vol. 50, No. 10, 1180-1189, Oct. 2003.
doi:10.1109/TBME.2003.817634

20. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, Vol. 2, IEEE Press, 1998.

21. Golub, G. H. and C. F. van Loan, Matrix Computations, Vol. 3, JHU Press, 2012.

22. Van der Vorst, H. A., Iterative Krylov Methods for Large Linear Systems, Vol. 13, Cambridge University Press, 2003.
doi:10.1017/CBO9780511615115

23. Van Dongen, K., C. Brennan, and W. M. D.Wright, "Reduced forward operator for electromagnetic wave scattering problems," IET Science, Measurement and Technology, Vol. 1, No. 1, 57-62, Jan. 2007.
doi:10.1049/iet-smt:20060023

24. Meissner, P., E. Leitinger, S. Hinteregger, J. Kulmer, M. Lafer, and K. Witrisal, MeasureMINT UWB database, Graz University of Technology, [online] available: www.spsc.tugraz.at/tools/UWBmeasurements, 2013.

25. Meissner, P., M. Gan, F. Mani, E. Leitinger, M. Frhle, C. Oestges, T. Zemen, and K. Witrisal, "On the use of ray tracing for performance prediction of UWB indoor localization systems," 2013 IEEE International Conference on Communications Workshops (ICC), 68-73, Jun. 2013.
doi:10.1109/ICCW.2013.6649203

26. Sarkar, T. K., Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma, "A survey of various propagation models for mobile communication," IEEE Antennas and Propagation Magazine, Vol. 45, No. 3, 51-82, Jun. 2003.
doi:10.1109/MAP.2003.1232163

27. Solahuddin, Y. F. and R. Mardeni, "Indoor empirical path loss prediction model for 2.4 GHz 802.11n network," 2011 IEEE International Conference on Control System, Computing and Engineering (ICCSCE), 12-17, Nov. 2011.

28. Andrade, C. B. and R. P. F. Hoefel, "IEEE 802.11 WLANs: A comparison on indoor coverage models," 2010 23rd Canadian Conference on Electrical and Computer Engineering (CCECE), 1-6, May 2010.

29. Kavanagh, I. and C. Brennan, "Validation of a volume integral equation method for indoor propagation modelling," 2017 Loughborough Antennas Propagation Conference (LAPC), Nov. 2017.

30. Holloway, C. L., M. G. Cotton, and P. McKenna, "A model for predicting the power delay profile characteristics inside a room," IEEE Transactions on Vehicular Technology, Vol. 48, No. 4, 1110-1120, Jul. 1999.
doi:10.1109/25.775360