Search Results(13741)

2018-08-10
PIER C
Vol. 86, 83-96
PSO Optimized Wideband LPDA Antenna with Non-Cross Feed Structure
Shailendra Singh Pawar and Madhu Shandilya
An optimized design of Microstrip Log Periodic Dipole Array (MLPDA) antenna with non-cross feed structure is reported in this paper. Particle Swarm Optimization (PSO) is utilized to reduce the size and enhance the bandwidth of proposed antenna. Proposed design employs an improved feed structure of non-cross feed array antenna to avoid complexity of conventional feeding with long coaxial line and creating Co Planar Waveguide (CPW) feed. A simple FR-4 substrate with thickness of 1 mm is utilized for simulation using CST. A fitness function based on S11 parameter is used to achieve the optimization goal. A prototype of proposed PSO optimized antenna is developed to validate the simulation results. The proposed antenna offers higher bandwidth and significantly smaller size than cross feed LPDA antennas, with less complexity and low cost through parameter optimization, while maintaining the log periodic nature and gain.
2018-08-10
PIER M
Vol. 71, 189-197
Broadband and Low-Profile Slot Antenna with AMC Surface for X/Ku Applications
Xueyan Song , Tian-Ling Zhang and Ze-Hong Yan
A low-profile and broadband slot antenna with artificial magnetic conductor (AMC) surface is designed for X and Ku communications. Loaded with evolved C-shaped branches, the proposed coplanar waveguide (CPW)-fed slot antenna, which consists of two radiating slots, exhibits wide impedance frequency band performance. The presented AMC, the unit cell of which is made up of two central hexagonal circles with six rectangle branches, operates in a wide in-phase reflection frequency band ranging from 6.0 to 13.94 GHz (79.64%) at the reference plane 4 mm above the AMC surface. An AMC surface composed of 8×10 AMC unit cells is located under the slot antenna with a distance of approximately 0.107λ (λ denotes the free-space wavelength at 8.0 GHz), which improves the radiation and impedance match properties of the broadband slot antenna while maintaining low profile. A prototype of the proposed slot antenna with AMC surface is fabricated and measured. Measured results show that the composite antenna achieves a wide impedance bandwidth from 7.64 to 14.58 GHz (62.47%). The measured peak gain is up to 10.26 dBi, and the maximum cross-polarization level is -17.5 dB for both E and H planes. Good agreements between the measured and simulated results validate good performance of the presented slot antenna within the desired frequency band.
2018-08-10
PIER M
Vol. 71, 179-188
Capacitor-Inductor-Loaded, Small-Sized Loop Antenna for WLAN Notebook Computers
Saou-Wen Su
A small-sized loop antenna loaded with the series-connected capacitor and inductor for wireless local area network (WLAN) operation is proposed. The main radiator of an L-shaped, loop structure and its small ground were constructed on a single-layered FR4 substrate of thickness 0.8 mm and occupied a miniature size of 5 mm × 20 mm only. It was found that by loading the series-connected capacitor and inductor between the antenna feed port and the loop radiator, the quarter-wavelength loop resonance can be easily excited together with the controllable half-wavelength resonance. The design prototype was able to operate in the 2.4-GHz (2400-2484 MHz) and 5.8-GHz (5725-5825 MHz) WLAN bands. The proposed antenna was simple in structure and yet provided dual-band operation and good radiation performance.
2018-08-08
PIER M
Vol. 72, 1-11
Spectral Behaviour of Planar Optical Waveguides and Microchannels in Cascade: Theoretical Evaluation
Jose Rodriguez García and Adrian Fernandez Gavela
This paper presents an extension and update of a theoretical procedure developed by the authors for the determination of the electromagnetic waves scattering at interfaces between dielectric waveguides in cascade. The theoretical core of the problem is based on the generalized scattering matrix concept, together with the generalized telegraphist equations formulism and the modal matching technique. The new version includes the following updates: a) possibility of using any material as waveguide cover, b) inclusion of alternating microchannels with optical waveguides, and c) possibility of analyzing periodic structures of segmented optical waveguides for sensing applications. The spectral results obtained for modulus and phase of the reflection and transmission coefficients have shown the potentiality of the new proposal in the scientific topics of photonic crystals, refractive index sensors and optical biosensors.
2018-08-08
PIER
Vol. 163, 25-38
Three-Dimensional Fully Interlaced Woven Microstrip-Fed Substrate Integrated Waveguide
Leticia Alonso-Gonzalez , Samuel Ver-Hoeye , Miguel Fernandez-Garcia and Fernando Las Heras Andres
A three-dimensional fully interlaced woven microstrip-fed substrate integrated waveguide has been designed, manufactured and experimentally validated. The waveguide has been conceived based on the conventional substrate integrated waveguide (SIW) technology and works in a range of frequencies between 7.5 GHz and 12 GHz. The SIW structure is suitable to be translated into different equivalent woven structures depending on the characteristics of the employed threads, as it has been presented in previous works. In this work, a structure based on rigid weft threads has been employed with the aim of translating both the waveguide and the corresponding SIW to microstrip transitions, into woven patterns and, therefore, achieving the main purpose of a complete integration of the circuit into the textile, avoiding the use of external transitions for its validation. Consequently, three prototypes, using three different lengths, have been manufactured and experimentally characterised, and the theoretically predicted behaviour of the prototypes has been experimentally verified.
2018-08-07
PIER M
Vol. 71, 169-178
Broadband Class-j/F-1 Continuum Mode Design Utilizing Harmonic Efficiency Selectivity Circuit
Gideon Naah , Songbai He , Weimin Shi , Bin Song , Tian Qi and Shaddrack Yaw Nusenu
This paper proposes a harmonic efficiency selectivity circuit (HESC) for achieving a broadband Class-J/F-1 continuum mode power amplifier (PA) with enhanced efficiency. Design equations are derived through continuum mode condition analysis and are used in implementing the HESC. The implemented HESC topology is then used in attaining the broadband Class-J/F-1 continuum mode PA. A theoretical parameter termed harmonic-alpha (ρh) acting as a sub-unit structure in HESC is introduced. Considering harmonic losses, ρh possesses a lookup table containing information on the harmonics. ρh operates in unison with the HESC in selecting the suitable harmonics with the best efficiencies. With ρh, the relationship among the HESC, the optimal impedance at the device's drain, and the terminal load impedance is defined for a greater freedom of harmonic impedance solutions space, efficiency improvement, and bandwidth extension, thus, indicating an increased flexibility in the design of broadband continuum mode PAs. This method is validated with a realized PA prototype operating from 1.3 to 2.4 GHz corresponding to a fractional bandwidth of 59.5%. The experimental results under continuous wave signals indicate that 79% peak efficiency, 42.68 dBm peak output power, and 16.96 dB peak gain are recorded. Moreover, at 1.7 GHz, when being tested with modulated signals at an average output power of 34.83 dBm, the lower and higher adjacent channel power ratios (ACPRs) without digital predistortion (DPD) are -34.9 dBc and -33.9 dBc, respectively, and a drain effifficiency (DE) of 45% is recorded. With DPD, -50.8 dBc and -50.3 dBc are respectively obtained at lower and higher ACPRs at an average output power of 34.6 dBm, and a DE of 44% is achieved.
2018-08-06
PIER M
Vol. 71, 157-167
UHF Wave Propagation in Mine Shaft Environment
Shaohua Xue , Jianping Tan and Lixiang Shi
Wireless communication is very valuable in underground mines, in which channel characterization plays an important role. In this paper, both narrowband and wideband measurements at three typical ultra-high frequencies of 433, 900 and 2400 MHz in a real mine shaft are performed. To our knowledge, this is the first work focusing on radio propagation in the mine shaft environment. Important channel characteristics, such as the path loss, delay spread and the number of multipath components were extracted from the measured data and compared with that in tunnel channels. The effects of frequency and antenna position on the path loss were investigated. The relationship between the root-mean-square (RMS) delay spread and the transmitter-receiver distance was also analyzed. The results will deepen our understanding of the mine shaft channel and help to design shaft wireless systems.
2018-08-02
PIER C
Vol. 86, 69-82
High-Speed Electrical Machine with Radial Magnetic Flux and Stator Core Made of Amorphous Magnetic Material. Technologies, Trends and Perspective of Development
Flur R. Ismagilov , Wenming Tong , Viacheslav Vavilov , Denis Gusakov and Valentina V. Ayguzina
This paper presents an analysis of the manufacturing technologies for the high-speed electrical machine with stator core made of amorphous magnetic material, their trends and perspective of development. The most efficient technology is determined. A design technology of sectional stator cores made of amorphous magnetic material is proposed. In addition, the paper shows the design methodology of the high-speed electrical machine with stator core made of amorphous magnetic material. A distinctive feature of the proposed technology is the implementation of the stator core made of amorphous magnetic material and laminated in the axial and radial directions. The fill factor for magnetic cores realized by this technology reaches 75%. The design methodology was tested on three prototypes of the high-speed electrical machine including the 120-kW prototype. The prototype experimental research is also presented in the paper. The main contribution is the loss minimization in the stator core made of amorphous magnetic material by 200%.
2018-08-02
PIER M
Vol. 71, 145-156
The Magnetic Interaction Energy Between an Infinite Solenoid and a Passing Point Charge
Hanno Essén and Johan C.-E. Sten
The standard expression for the magnetic interaction energy used in the study of the Aharonov-Bohm effect is investigated. We calculate the magnetic interaction energy between a point charge and an infinite solenoid from first principles. Two alternative expressions are used: the scalar products of the currents with the vector potentials and the scalar product of the magnetic fields. The alternatives are seen to agree. The latter approach also involves taking into account surface integrals at infinity, which are shown to be zero. Our model problem indicates no classical Aharonov-Bohm effect, but we also discuss the normally neglected fact of energy non-conservation. The problem is treated from the point of view of Lagrangian and Hamiltonian mechanics.
2018-08-02
PIER M
Vol. 71, 137-144
Propagation Below Cutoff in Metallic Waveguide Loaded by Two Slabs with Modified Split Ring Resonator
Abd Elmoneim Mohamed Alaa Eldeen
This paper aims to study the synthesis of negative magnetic permeability and how this leads into some physical phenomena such as the appearance of backward waves and the propagation below cutoff. The extraction of the polarizability tensors of the edge coupled split ring resonator is derived, and the existence of bianisotropic effects of this case is investigated. It is shown how to avoid the bianisotropic effects through using a proposed design. inally, the backward wave of the proposed design with lower losses than the edge coupled split ring resonator is shown by simulation.
2018-08-02
PIER
Vol. 163, 15-24
Development of Multilayer Rectangular Coils for Multiple-Receiver Multiple-Frequency Wireless Power Transfer
Chaoqiang Jiang , Kwok-Tong Chau , Wei Han and Wei Liu
In this paper, three viable multilayer rectangular coil structures, namely the spiral, concentrated and uneven compound types, are proposed and analyzed. In the multiple-receiver multiple-frequency wireless power transfer system, the compact coil topologies are particularly preferable and should fulfill the required performance of magnetic field with the compact size design. In order to minimize the variation of magnetic fields that can be picked up by multiple receivers, the uneven compound type is newly derived by combining the merits of both the spiral and concentrated types. Because of providing more uniform magnetic flux density distribution, the uneven compound type can achieve better tolerance of misalignment. Without any misalignment, its transmission efficiency can reach up to 92%. Moreover, their electric potential distributions are analyzed to provide guidance for the maximum input current at the desired operation frequency. Both finite element analysis and experimental results are given to verify the validity of the proposed coil structures.
2018-08-01
PIER Letters
Vol. 77, 123-128
A Balanced Bandpass Filter with Ultra-Wide Stopband and Common-Mode Suppression
Zhi-Jie Yang , Yang-Yang Shan , Xin-Tong Zou , Feng Wei and Bin Li
A balanced-to-balanced (BTB) bandpass filter (BPF) with an ultra-wide upper stopband is proposed in this letter. The proposed BPF is fed by balanced stepped-impedance microstrip-to-slotline transition structures. Good differential-mode (DM) transmission and common-mode (CM) suppression can be achieved intrinsically. To achieve good quality in DM passband and out-of-band suppression, a pair of dual-mode resonators has been designed and adopted. Meanwhile, the proposed balanced BPF exhibits an ultra-wide upper stopband of 162.7%. In order to verify the feasibility of the design method, a balanced BPF with a centre frequency of 1.57 GHz has been fabricated and measured. Measured results indicate that the designed filter achieves an out-of-band rejection better than 15 dB from 1.85 to 18 GHz, and the insertion loss (IL) inside the passband less than 1.4 dB. A good agreement between the simulation and measurement results demonstrates the validity of the design.
2018-08-01
PIER M
Vol. 71, 127-136
Dual-Band UHF RFID Tag Antenna Using Two Eccentric Circular Rings
Bidisha Barman , Sudhir Bhaskar and Amit Kumar Singh
A low profile dual-band passive Ultra High Frequency Radio Frequency Identification (UHF RFID) tag antenna designed to operate at two RFID bands allocated for use in Europe (865-868 MHz) and Japan (950-956 MHz) is proposed. The antenna has two eccentric circular rings of different radii to provide dual band response. An arc-shaped strip with Impinj Monza-4 IC chip is used to feed the two rings simultaneously by microstrip-line coupling-feed technique. The proposed design is simulated using Ansoft HFSS, and the prototype is fabricated. The return losses at 866 MHz and 952 MHz are measured to be -12.25 dB and -12.99 dB, respectively, which are in good agreement with the simulated results. The proposed antenna exhibits a 10 dB bandwidth of 9 MHz from 862 to 870 MHz and an 8 MHz 10 dB bandwidth from 949 to 956 MHz covering the UHF RFID bands in Europe and Japan. The maximum read ranges are measured to be around 3 m in the 865-868 MHz band and 2.6 m in the 950-956 MHz band.
2018-07-31
PIER Letters
Vol. 77, 117-122
Printed Frequency Scanning Antenna Array with Wide Scanning Angle Range
Liaori Jidi , Xiang-Yu Cao , Xuewen Zhu and Bowen Zhu
Leaky-wave radiations are usually generated by leaking the electromagnetic energy gradually over a structure. By using the coupling effect and leaky-wave properties, this paper designs a novel 1-D frequency scanning antenna array. The antenna is intended for the direct imaging radar sensors. The simulated results show that the scanning angle can stay in the range from -60˚ to 30˚. The proposed 1-D antenna array was manufactured, and the measured results are consistent with the simulated ones.
2018-07-31
PIER M
Vol. 71, 117-125
UCA-NW Algorithm for Space-Time Antijamming
Fulai Liu , Miao Zhang , Xianchao Wang and Ruiyan Du
Space-time antijamming problems cause widespread concern recently in global navigation satellite system. Space-time adaptive procession (STAP) is an effective method to suppress interference signals, which contains two adaptive filters, i.e., spatial filter and temporal filter, and the array pattern can be automatically optimized by adjusting the weights obtained from a prescribed objective function. However, mismatch may occur between adaptive weights and data, due to the change of the interference location when receiver is shaking. In this case, the performance of STAP will degrade dramatically. To solve this problem, an effective nulling widen method based on uniform circular array (named as UCA-NW algorithm) is proposed for space-time antijamming. Through this method, an extension matrix is given to modify the covariance matrix and the formed null can be broadened from azimuth angle and pitch angle, respectively. Thus, this algorithm can suppress interference signals effectively when the receiver is shaking, and the width of nulls can be controlled easily. Simulation results are presented to verify the feasibility and effectiveness of the proposed algorithm.
2018-07-31
PIER M
Vol. 71, 107-115
High Sensitivity Refractive Index Sensor Based on Metamaterial Absorber
Wei Zhang , Jian-Ying Li and Jian Xie
A metamaterial sensor is designed in this paper which can be used to detect the refractive index of an unknown dielectric loaded on the top surface of a metamaterial absorber. The resonant frequency of the absorber will be changed with various refractive indexes of the loaded dielectrics. Especially, the resonant frequency of the sensor is uniquely related to the refractive index of the unknown dielectric with the constant thickness, the linear relation of which is obtained by simulation fitting. A prototype of the absorber is manufactured and measured, which testify the design theory and simulation results. The Sfre of the proposed sensor is 0.3537GHz/RIU, and the FoM can reach 11.0531RIU-1.
2018-07-31
PIER
Vol. 162, 109-121
An UWB Antenna Array for Flexible IoT Wireless Systems
Haider Khaleel Raad
In this paper, a flexible compact antenna array operating in the 3.2-13 GHz which covers the standard Ultra-Wide Band (UWB) frequency range is presented. The design is aimed at integration within Multiple Input Multiple Output (MIMO) based flexible electronics for Internet of Things (IoT) applications. The proposed antenna is printed on a single side of a 50.8 μm Kapton Polyimide substrate and consists of two half-elliptical shaped radiating elements fed by two Coplanar Waveguide (CPW) structures. The simulated and measured results show that the proposed antenna array achieves a broad impedance bandwidth with reasonable isolation performance (S12 < -23 dB) across the operating bandwidth. Furthermore, the proposed antenna exhibits a low susceptibility to performance degradation caused by the effect of bending. The system's isolation performance along with its flexible and thin profile suggests that the proposed antenna is suitable for integration within flexible Internet of Things (IoT) wireless systems.
2018-07-30
PIER Letters
Vol. 77, 109-115
Terahertz Polariton Dispersion in Uniaxial Optical Crystals
Seiji Kojima
Phonon-polariton is the coupled excitation between optical phonon and photon. The remarkable frequency vs. wavevector dispersion relation of phonon-polariton contributes to important technological applications such as tunable terahertz radiation sources and basic materials science to clarify the terahertz dynamics of condensed matter such as lattice instability in ferroelectrics. This paper studies the broadband dispersion relation of phonon-polariton between 10 cm-1 and 1200 cm-1 in uniaxial ferroeletric crystals, LiNbO3 (LN) and LiTaO3 (LT) with polar trigonal system on the basis of the observed results using THz-Raman spectroscopy, THz time domain spectroscopy, and far-infrared spectroscopy. The dispersion on the lowest-frequency TO mode with A1(z) symmetry of LN and LT crystals, which are assigned as ferroelectric soft modes, is discussed.
2018-07-30
PIER M
Vol. 71, 95-105
Chip-Package Co-Design for Optimization of 5.8 GHz LNA Performance Based on Embedded Inductors
Haiyan Sun , Wenjun Sun , Ling Sun , Jicong Zhao , Yihong Peng , Jiaen Fang , Xiaoyong Miao and Honghui Wang
This paper presents the design and demonstration of an optimized land grid array (LGA) structure for low noise amplifier (LNA). In order to achieve better circuit performance, the novel chip-package co-design method based on embedded inductors is used. The optimized structure is accurately modeled by ANSYS software. S-parameter is utilized to help in understanding the contributing to the optimized LGA structure. The simulation results for the novel LNA co-design structure show the gain 14.35 dB (> 10 dB), input reflection coefficient -15.63 dB (< -10 dB), output reflection coefficient -24.43 dB (< -10 dB), reverse-isolation -44.7 dB (< -20 dB), and noise figure 2.99 dB (< 4 dB), and indicate that the optimized LGA structure based on embedded inductors is fully capable of supporting 5.8 GHz LNA application.
2018-07-30
PIER M
Vol. 71, 85-94
A T-Matrix Solver for Fast Modeling of Scattering from Multiple PEC Objects
Lin E. Sun
T matrix characterizes the scattering property of a single PEC object and does not depend on the incidence. In this work, we propose a method to derive a reduced-order T matrix for a single 3D PEC object with arbitrary shape. The method is based on the vector addition theorem and the conventional EFIE, MFIE or CFIE methods. Given the T matrix for a PEC object, the scattered fields can be directly calculated from any incidence. For multiple objects, a matrix equation system is built based on the T-matrix and the position of each object. Finally, numerical examples show the accuracy and efficiency for solving the scattering of both spherical and non-spherical arrays. Compared to the moment methods, the computational cost of solving the final matrix equation is reduced by several orders of magnitude.