Vol. 71
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-31
High Sensitivity Refractive Index Sensor Based on Metamaterial Absorber
By
Progress In Electromagnetics Research M, Vol. 71, 107-115, 2018
Abstract
A metamaterial sensor is designed in this paper which can be used to detect the refractive index of an unknown dielectric loaded on the top surface of a metamaterial absorber. The resonant frequency of the absorber will be changed with various refractive indexes of the loaded dielectrics. Especially, the resonant frequency of the sensor is uniquely related to the refractive index of the unknown dielectric with the constant thickness, the linear relation of which is obtained by simulation fitting. A prototype of the absorber is manufactured and measured, which testify the design theory and simulation results. The Sfre of the proposed sensor is 0.3537GHz/RIU, and the FoM can reach 11.0531RIU-1.
Citation
Wei Zhang, Jian-Ying Li, and Jian Xie, "High Sensitivity Refractive Index Sensor Based on Metamaterial Absorber," Progress In Electromagnetics Research M, Vol. 71, 107-115, 2018.
doi:10.2528/PIERM18042903
References

1. Chen, H. T., A. J. Taylor, and N. F. Yu, "A review of metasurfaces: Physics and applications," Rep. Prog. Phys., Vol. 79, 076401, 2016.
doi:10.1088/0034-4885/79/7/076401

2. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

3. Cubukcu, E., S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, "Split ring resonator sensors for infrared detection of single molecular monolayers," Appl. Phys. Lett., Vol. 95, No. 4, 189, 2009.
doi:10.1063/1.3194154

4. Kuhestani, H., M. N. Moghadasi, M. Maleki, and F. B. Zarrabi, "Phase shifter designing base ob hale mode substrate integrated waveguide with reconfigurable quality," Microw. and Opt. Technology Lett., Vol. 57, 2563-2567, 2015.

5. Tan, C., X. Fu, Y. Hu, Y. Deng, X. Shi, S. Zhan, and Z. Xi, "Plasma optical modulation for lasers based on the plasma induced by femtosecond pulses," Optics Express, Vol. 25, 14065-14076, 2017.
doi:10.1364/OE.25.014065

6. Shen, Y., J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and C. J. Wang, "Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit," Nature Communications, Vol. 4, 2381, 2013.
doi:10.1038/ncomms3381

7. Lodewijks, K., R. W. Van, G. Borghs, L. Lagae, and D. P. Van, "Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements," Nano Letters, Vol. 12, 1655-1659, 2012.
doi:10.1021/nl300044a

8. Lu, X. Y., R. G. Wan, F. Liu, and T. Y. Zhang, "High-sensitivity plasmonic sensor based on perfect absorber with metallic nanoring structures," Journal of Modern Optics, Vol. 63, 177-193, 2016.
doi:10.1080/09500340.2015.1066459

9. Taniguchi, T., K. Sanbonsugi, Y. Ozaki, and A. Norimoto, "Temperature measurement of high speed rotating turbine blades using a pyrometer," ASME Turbo Expo 2006: Power for Land, Sea, and Air, Vol. 2, 521-529, ASME, New York, NY, USA, May 2006.

10. Zappe, S., et al. "High temperature 10 bar pressure sensor based on 3C-SiC/SOI for turbine control applications," Proc. 1st Nagaoka Int. Workshop Magn. Platform Sci. Technol., 753-756, 2000.

11. Dumais, P., C. L. Callender, J. P. Noad, and C. J. Ledderhof, "Silica-on-Silicon optical sensor based on integrated waveguides and micro-channels," IEEE Photon. Technol. Lett., Vol. 17, 441-443, 2005.
doi:10.1109/LPT.2004.839430

12. Nacer, S. and A. Aissat, "Optical sensing by silicon slot-based directional couplers," Opt. Quantum Electron., Vol. 44, 35-43, 2012.
doi:10.1007/s11082-011-9530-3

13. Syahir, A., K. Usui, K. Tomizaki, K. Kajikawa, and H. Mihara, "Label and label-free detection techniques for protein microarrays," Microarrays, Vol. 4, 228-244, 2015.
doi:10.3390/microarrays4020228

14. Fan, X. D., et al. "Sensitivity optical biosensors for unlabeled targets a review," Anal. Chim. Acta, Vol. 620, 8-26, 2008.
doi:10.1016/j.aca.2008.05.022

15. Dikovska, A. Og., et al. "Optical sensing of ammonia using ZnO nanostructure grown on a side-polished optical-fiber," Sens. Actuators B, Vol. 146, 331-336, 2010.
doi:10.1016/j.snb.2010.02.018

16. Topliss, S. M., et al. "Optical fibre long period grating based selective vapour sensing of volatile organic compounds," Sens. Actuators B, Vol. 143, 629-634, 2010.
doi:10.1016/j.snb.2009.10.008

17. Barrios, C. A., "Optical slot-waveguide based biochemical sensors," Sensors, Vol. 9, 4751-4765, 2009.
doi:10.3390/s90604751

18. Palmer, R., et al. "Low-loss silicon strip-to-slot mode converters," IEEE Photon. J., Vol. 5, 2200409-2200509, 2013.
doi:10.1109/JPHOT.2013.2239283

19. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

20. Harlow, J. H., Electric Power Transformer Engineering, 2-216, CRC Press, 2004, archived from the original on 2016-12-02.

21. Shelby, R. A., D. R. Smith, and S. Schultzr, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

22. Bencker, J., A. Truugler, A. Jakab, U. Hohenester, and C. Sonnichsen, "The optimal aspect ratio of gold nanorods for plasmonic bio-sensing," Plasmonics, Vol. 5, 161-167, 2010.
doi:10.1007/s11468-010-9130-2