Vol. 163
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2018-08-08
Three-Dimensional Fully Interlaced Woven Microstrip-Fed Substrate Integrated Waveguide
By
Progress In Electromagnetics Research, Vol. 163, 25-38, 2018
Abstract
A three-dimensional fully interlaced woven microstrip-fed substrate integrated waveguide has been designed, manufactured and experimentally validated. The waveguide has been conceived based on the conventional substrate integrated waveguide (SIW) technology and works in a range of frequencies between 7.5 GHz and 12 GHz. The SIW structure is suitable to be translated into different equivalent woven structures depending on the characteristics of the employed threads, as it has been presented in previous works. In this work, a structure based on rigid weft threads has been employed with the aim of translating both the waveguide and the corresponding SIW to microstrip transitions, into woven patterns and, therefore, achieving the main purpose of a complete integration of the circuit into the textile, avoiding the use of external transitions for its validation. Consequently, three prototypes, using three different lengths, have been manufactured and experimentally characterised, and the theoretically predicted behaviour of the prototypes has been experimentally verified.
Citation
Leticia Alonso-Gonzalez, Samuel Ver-Hoeye, Miguel Fernandez-Garcia, and Fernando Las Heras Andres, "Three-Dimensional Fully Interlaced Woven Microstrip-Fed Substrate Integrated Waveguide," Progress In Electromagnetics Research, Vol. 163, 25-38, 2018.
doi:10.2528/PIER18040207
References

1. DicCbshfsE, J., M. K. Abd Rahim, N. A. Samsuri, H. A. M. Salim, and M. F. Ali, "Embroidered fully textile wearable antenna for medical monitoring applications," Progress In Electromagnetics Research, Vol. 117, 321-337, 2011.
doi:10.2528/PIER11041208

2. Ginestet, G., et al. "Embroidered antenna-microchip interconnections and contour antennas in passive UHF RFID textile tags," IEEE Antennas Wireless and Propagation Letters, Vol. 16, 1205-1208, Nov. 2017.
doi:10.1109/LAWP.2016.2628086

3. Paraskevopoulos, A., et al. "Higher-mode textile patch antenna with embroidered vias for on-body communication," IET Microwaves, Antennas and Propagation, Vol. 10, No. 7, 802-807, May 2016.
doi:10.1049/iet-map.2015.0650

4. Kiourti, A., C. Lee, and J. L. Volakis, "Fabrication of textile antennas and circuits with 0.1 mm precision ," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 151-153, May 2016.
doi:10.1109/LAWP.2015.2435257

5. Wang, Z., L. Zhang, Y. Bayram, and J. L. Volakis, "Embroidered conductive fibers on polymer composite for conformal antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4141-4147, Sep. 2012.
doi:10.1109/TAP.2012.2207055

6. Acti, T., et al. "Embroidered wire dipole antennas using novel copper yarns," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 638-641, Nov. 2015.

7. Senbokuya, Y. and H. Tsunoda, "A study on the circular patch antennas using conductive non-woven fiber fabrics," IEEE Antennas and Propagation Society International Symposium, San Antonio, TX, USA, Jun. 16-21, 2002.

8. Monti, G., L. Corchia, E. De Benedetto, and L. Tarricone, "Wearable logo-antenna for GPSGSM-based tracking systems," IET Microwaves, Antennas and Propagation, Vol. 10, No. 12, 1332-1338, Sep. 2016.
doi:10.1049/iet-map.2015.0774

9. Shawl, R. K., B. R. Longj, D. H.Werner, and A. Gavrin, "The characterization of conductive textile materials intended for radio frequency applications," IEEE Antennas and Propagation Magazine, Vol. 49, No. 3, 28-40, Jun. 2007.
doi:10.1109/MAP.2007.4293934

10. Jalil, M. E. B., M. K. Abd Rahim, N. A. Samsuri, N. A. Murad, H. A. Majid, K. Kamardin, and M. Azfar Abdullah, "Fractal koch multiband textile antenna performance with bending, wet conditions and on the human body," Progress In Electromagnetics Research, Vol. 140, 633-652, 2013.
doi:10.2528/PIER13041212

11. Jais, M. I., M. F. B. Jamlos, M. Jusoh, T. Sabapathy, M. R. Kamarudin, R. B. Ahmad, A. Abdullah Al-Hadi, E. I. Bin Azmi, P. J. Soh, G. A. E. Vandenbosch, and N. L. K. Ishak, "A novel 2.45 GHz switchable beam textile antenna (SBTA) for outdoor wireless body area network (WBAN) applications," Progress In Electromagnetics Research, Vol. 138, 613-627, 2013.
doi:10.2528/PIER13022610

12. Soh, P. J., S. J. Boyes, G. A. E. Vandenbosch, Y. Huang, and S. L. Ooi, "On-body characterization of dual-band all-textile PIFA," Progress In Electromagnetics Research, Vol. 129, 517-539, 2012.
doi:10.2528/PIER12052408

13. Lin, X., B. C. Seet, and F. Joseph, "Fabric antenna with body temperature sensing for BAN applications over 5G wireless systems," International Conference on Sensing Technologies, Auckland, New Zeland, Dec. 8-10, 2015.

14. Yahya, R., M. R. Kamarudin, N. Seman, and H. U. Iddi, "Eye shaped fabric antenna for UWB application," IEEE Antennas and Propagation Society International Symposium, Orlando, FL, Jul. 7-13, 2013.

15. Elmobarak Elobaid, H. A., S. K. Abdul Rahim, M. Himdi, X. Castel, and M. Abedian Kasgari, "A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1333-1336, Dec. 2016.

16. Whittow, W. G., et al. "Inkjet-printed microstrip patch antennas realized on textile for wearable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 71-74, Jan. 2014.
doi:10.1109/LAWP.2013.2295942

17. Chauraya, A., et al. "Inkjet printed dipole antennas on textiles for wearable communications," IET Microwaves, Antennas and Propagation, Vol. 7, No. 9, 760-767, Jun. 2013.
doi:10.1049/iet-map.2013.0076

18. Scarpello, M. L., I. Kazani, C. Hertleer, H. Rogier, and D. Vande Ginste, "Stability and efficiency of screen-printed wearable and washable antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 838-841, Jul. 2012.

19. Akbari, M., L. Syd¨anheimo, Y. Rahmat-Sami, J. Virkki, and L. Ukkonen, "Implementation and performance evaluation of graphene-based passive UHF RFID textile tags," International Symposium on Electromagnetic Theory, Espoo, Finland, Aug. 14-18, 2016.

20. Georget, E., R. Abdeddaim, and P. Sabouroux, "Analytical, simulation and measurement studies of a dual-band open-sleeve curved meander line antenna on a flexible substrate," Progress In Electromagnetics Research, Vol. 145, 49-57, 2014.
doi:10.2528/PIER13122004

21. Hong, Y., J. Tak, and J. Choi, "An all-textile SIW cavity-backed circular ring-slot antenna for WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1995-1999, 2016.
doi:10.1109/LAWP.2016.2549578

22. Castel, T., et al. "Capacity of broadband body-to-body channels between firefighters wearing textile SIW antennas," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1918-1931, May 2016.
doi:10.1109/TAP.2016.2535488

23. Moro, R., et al. "Textile microwave components in substrate integrated waveguide technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 2, 422-432, Feb. 2015.
doi:10.1109/TMTT.2014.2387272

24. Bozzi, M., et al. "Innovative SIW components on paper, textile, and 3D-printed substrates for the Internet of Things," Asia-Pacific Microwave Conference (APMC), Nanjing, China, Dec. 6-9, 2015.

25. Moro, R., et al. "Compact cavity-backed antenna on textile in substrate integrated waveguide (SIW) technology," European Microwave Conference, 1007-1010, Nuremberg, 2013.

26. Moro, R., et al. "Circularly-polarised cavity-backed wearable antenna in SIW technology," IET Microwaves, Antennas and Propagation, Vol. 12, No. 1, 127-131, Oct. 2018.
doi:10.1049/iet-map.2017.0271

27. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Dual-band textile MIMO antenna based on substrate-integrated waveguide (SIW) technology," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4640-4647, Nov. 2015.
doi:10.1109/TAP.2015.2477094

28. Alonso, L., et al. "Millimetre wave textile integrated waveguide beamforming antenna for radar applications," Global Symposium on Millimeter-Waves, Montreal, QC, May 25-27, 2015.

29. Alonso-Gonzalez, L., et al. "On the techniques to develop millimeter-wave textile integrated waveguides using rigid warp threads," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 2, 751-761, Feb. 2018.
doi:10.1109/TMTT.2017.2777983

30. Alonso-Gonzalez, L., et al. "Fully textile-integrated microstrip-fed slot antenna for dedicated short-range communications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2262-2270, May 2018.
doi:10.1109/TAP.2018.2814203

31. Hu, J., "Structure and mechnics of woven fabrics," Woodhead Publishing in Textiles, The Textile Institute, 63-66, New York, NY, USA, 2004.

32. Chao, L., B. Yu, A. Sharma, and M. N. Afsar, "Dielectric permittivity measurements of thin films at microwave and terahertz frequencies," European Microwave Conference, Manchester, UK, Oct. 10-13, 2011.

33. Steele, B. C., "Electronic ceramics," Elsevier Applied Science, 140, London, UK, USA, 1991.

34. Bilisik, K., N. S. Karaduman, N. E. Bilisik, and H. E. Bilisik, "Three-dimensional fully interlaced woven preforms for composites," Textile Research Journal, Vol. 83, No. 19, 2060-2084, 2013.
doi:10.1177/0040517513487791

35. Ma, P. and Z. Gao, "A review on the impact tension behaviors of textile structural composites," Journal of Industrial Textiles, Vol. 44, No. 4, 572-604, 2015.
doi:10.1177/1528083713503001