Vol. 71
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-31
UCA-NW Algorithm for Space-Time Antijamming
By
Progress In Electromagnetics Research M, Vol. 71, 117-125, 2018
Abstract
Space-time antijamming problems cause widespread concern recently in global navigation satellite system. Space-time adaptive procession (STAP) is an effective method to suppress interference signals, which contains two adaptive filters, i.e., spatial filter and temporal filter, and the array pattern can be automatically optimized by adjusting the weights obtained from a prescribed objective function. However, mismatch may occur between adaptive weights and data, due to the change of the interference location when receiver is shaking. In this case, the performance of STAP will degrade dramatically. To solve this problem, an effective nulling widen method based on uniform circular array (named as UCA-NW algorithm) is proposed for space-time antijamming. Through this method, an extension matrix is given to modify the covariance matrix and the formed null can be broadened from azimuth angle and pitch angle, respectively. Thus, this algorithm can suppress interference signals effectively when the receiver is shaking, and the width of nulls can be controlled easily. Simulation results are presented to verify the feasibility and effectiveness of the proposed algorithm.
Citation
Fulai Liu Miao Zhang Xianchao Wang Ruiyan Du , "UCA-NW Algorithm for Space-Time Antijamming," Progress In Electromagnetics Research M, Vol. 71, 117-125, 2018.
doi:10.2528/PIERM18061404
http://www.jpier.org/PIERM/pier.php?paper=18061404
References

1. Kamath, V., Y. C. Lai, and L. Zhu, "Empirical mode decomposition and blind source separation methods for antijamming with GPS signals," Position, Location, And Navigation Symposium, 2006.

2. Lu, D., R. B. Wu, and Z. G. Sue, "A space-frequency anti-jamming algorithm for GPS," Antennas and Propagation Society International Symposium, 2007.

3. Liu, F. L., G. Z. Sun, J. K. Wang, and R. Y. Du, "Null broadening and sidelobe control algorithm via multi-parametric quadratic programming for robust adaptive beamforming," ACES Journal, Vol. 29, No. 4, 307-315, 2014.

4. Ge, L., D. Lu, W. Wang, and L. Wang, "A high-dynamic null-widen GNSS anti-jamming algorithm based on reduced-dimension space-time adaptive processing," China Satellite Navigation Conference, 2015.

5. Mailloux, R. J., "Covariance matrix augmentation to produce adaptive array pattern troughs," Electronics Letters, Vol. 31, No. 10, 771-772, 1995.
doi:10.1049/el:19950537

6. Zatman, M., "Production of adaptive array troughs by dispersion synthesis," Electronics Letters, Vol. 31, No. 25, 2141-2142, 1995.
doi:10.1049/el:19951486

7. Guerci, J. R., "Theory and application of covariance matrix tapers for robust adaptive beamforming," IEEE Transactions on Signal Processing, Vol. 47, No. 4, 977-985, 1999.
doi:10.1109/78.752596

8. Li, W. X., Z. Yu, Y. B. Ye, and B. Yang, "Adaptive antenna null broadening beamforming against array calibration error based on adaptive variable diagonal loading," International Journal of Antennas Propagation, Vol. 2017, No. 12, 1-9, 2017.

9. Jafargholi, A., M. Mousavi, and M. Emadi, "Wide-band VHF nulling by five elements spiral array antenna," ITS Telecommunications Proceedings, 2006.

10. Yang, H. W. and J. G. Huang, "A broadband constant beam width adaptive beamforming method," Computer Simulation, Vol. 10, No. 27, 339-342, 2010.

11. Liu, F. L., R. Y. Du, J. K. Wang, and B. Wang, "A robust adaptive control method for widening interference nulls," IET International Radar Conference, 2009.

12. Li, W. X. and B. Yang, "An improved null broadening beamforming method based on covariance matrix reconstruction," Applied Computational Electromagnetics Society Symposium, 2017.

13. Qian, J. H., Z. S. He, and Y. L. Zhang, "Null broadening adaptive beamforming based on semidefinite programming," Signal Processing, 2017.

14. Zhang, B. H., H. G. Ma, and X. L. Sun, "Robust anti-jamming method for high dynamic global positioning system receiver," IET Signal Processing, Vol. 10, No. 4, 342-350, 2016.
doi:10.1049/iet-spr.2015.0122

15. Zetterberg, P. and B. Ottersten, "The spectrum efficiency of a basestation antenna array system for spatially selective transmission," IEEE Transactions on Vehicular Technology, Vol. 44, No. 3, 651-660, 1995.
doi:10.1109/25.406634

16. Riba, J., J. Goldberg, and G. Vazquez, "Robust beamforming for interference rejection in mobile communications," IEEE Transactions on Signal Processing, Vol. 45, No. 1, 271-275, 1997.
doi:10.1109/78.552229

17. Ma, Y. X., L. Dan, W. Y. Wang, L. Wang, and R. B. Wu, "A high-dynamic null-widen GPS anti-jamming algorithm based on statistical model of changing interference DOA," China Stellite Navigation Conference, 2014.