Vol. 71
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2018-07-30
A T-Matrix Solver for Fast Modeling of Scattering from Multiple PEC Objects
By
Progress In Electromagnetics Research M, Vol. 71, 85-94, 2018
Abstract
T matrix characterizes the scattering property of a single PEC object and does not depend on the incidence. In this work, we propose a method to derive a reduced-order T matrix for a single 3D PEC object with arbitrary shape. The method is based on the vector addition theorem and the conventional EFIE, MFIE or CFIE methods. Given the T matrix for a PEC object, the scattered fields can be directly calculated from any incidence. For multiple objects, a matrix equation system is built based on the T-matrix and the position of each object. Finally, numerical examples show the accuracy and efficiency for solving the scattering of both spherical and non-spherical arrays. Compared to the moment methods, the computational cost of solving the final matrix equation is reduced by several orders of magnitude.
Citation
Lin E. Sun, "A T-Matrix Solver for Fast Modeling of Scattering from Multiple PEC Objects," Progress In Electromagnetics Research M, Vol. 71, 85-94, 2018.
doi:10.2528/PIERM18040606
References

1. Waterman, P. C., "Matrix formulation of electromagnetic scattering," Proc. IEEE, Vol. 53, 805-812, 1965.
doi:10.1109/PROC.1965.4058

2. Peterson, B. and S. Strom, "T matrix for electromagnetic scattering from an arbitrary number of scatterers and representations of E(3)*," Physical Review, Vol. 8, No. 10, 3661-3678, Nov. 1973.

3. Wang, Y. M. and W. C. Chew, "An efficient algorithm for solution of a scattering problem," Microwave and Optical Technology Letters, Vol. 3, No. 3, 102-106, Mar. 1990.
doi:10.1002/mop.4650030309

4. Wang, Y. M. and W. C. Chew, "A recursive T-matrix approach for solution of electromagnetic scattering by many spheres," IEEE Trans. on Antennas and Propagation, Vol. 41, No. 12, 1633-1639, Dec. 1993.
doi:10.1109/8.273306

5. Gurel, L. and W. C. Chew, "A recursive T-matrix algorithm for strips and patches," Radio Science, Vol. 27, No. 3, 387-401, May-Jun. 1992.
doi:10.1029/91RS03054

6. Chew, W. C., "Vector addition theorem and its diagonalization," Commun. Comput. Phys., Vol. 3, No. 2, 330-341, Feb. 2008.

7. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

8. Sun, L. E. and W. C. Chew, "An efficient T-matrix method for analyzing the electromagnetic scattering of multiple PEC objects," Proc. of URSI General Assembly, San Diego, CA, Jul. 2008.

9. Mackowski, D. W. and M. I. Mishchenko, "Calculation of the T-matrix and the scattering matrix for ensembles of spheres," J. Opt. Soc. Am. A, Vol. 13, 2266-2278, 1996.
doi:10.1364/JOSAA.13.002266

10. Xu, H. X., "Calculation of the near field of aggregates of arbitrary spheres," J. Opt. Soc. Am. A, Vol. 21, No. 5, 804-809, May 2004.
doi:10.1364/JOSAA.21.000804

11. Forestiere, C., G. Iadarola, L. D. Negro, and G. Miano, "Near-field calculation based on the T-matrix method with discrete sources," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 112, 2384-2394, 2011.
doi:10.1016/j.jqsrt.2011.05.009

12. Zhang, Y. J. and E. P. Li, "Fast multipole accelerated scattering matrix method for multiple scattering of a large number of cylinders," Progress In Electromagnetics Research, Vol. 72, 105-126, 2007.
doi:10.2528/PIER07030503

13. Hao, S., P. G. Martinsson, and P. Young, "An efficient and highly accurate solver for multi-body acoustic scattering problems involving rotationally symmetric scatterers," Computers & Mathematics with Applications, Vol. 69, 304-318, 2015.
doi:10.1016/j.camwa.2014.11.014

14. Kim, K. T. and B. A. Kramer, "Direct determination of the T-matrix from a MOM impedance matrix computed using the Rao-Wilton-Glisson basis function," IEEE Trans. on Antennas and Propagation, Vol. 61, No. 10, 5324-5327, 2013.
doi:10.1109/TAP.2013.2273485

15. Gimbutas, Z. and L. Greengard, "Fast multi-particle scattering: A hybrid solver for the Maxwell equations in microstructured materials," Journal of Computational Physics, Vol. 232, 22-32, 2013.
doi:10.1016/j.jcp.2012.01.041