1. Rodrıguez, J., M. G. Granda, A. F. Gavela, S. J. A. Presa, M. R. Lastra, and S. F. Fernandez, "Electromagnetic waves scattering at interfaces between dielectric waveguides: A review on analysis and applications," Progress In Electromagnetics Research B, Vol. 37, 103-124, 2012.
doi:10.2528/PIERB11083106 Google Scholar
2. Halir, R., et al. "Waveguide sub-wavelength structures: A review of principles and applications," Laser Photonics Rev., Vol. 9, No. 1, 25-49, 2015.
doi:10.1002/lpor.201400083 Google Scholar
3. Alberucci, A., et al. "Light confinement via periodic modulation of the refractive index," New Journal of Physics, Vol. 15, 083013, 2013.
doi:10.1088/1367-2630/15/8/083013 Google Scholar
4. Bhuvaneshwaran, A., et al. "Spectral response of Bragg gratings in multimode polymer waveguides," Applied Optics, Vol. 56, No. 34, 9573-9582, 2017.
doi:10.1364/AO.56.009573 Google Scholar
5. Ortega, D., et al. "Cutoff wavelength of periodically segmented waveguide in Ti:LiNbO3," J. Lightwave Technology, Vol. 16, No. 2, 284-290, 1998.
doi:10.1109/50.661022 Google Scholar
6. Chang-Hasnain, C. J. and W. Yang, "High-contrast gratings for integrated optoelectronics," OSA, Advances in Optics and Photonics, Vol. 4, No. 3, 379-440, 2012.
doi:10.1364/AOP.4.000379 Google Scholar
7. Hopman, W. C. L., et al. "Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 1, 11-16, 2005.
doi:10.1109/JSTQE.2004.841693 Google Scholar
8. Lumeau, J., et al. "Micromirrors with controlled amplitude and phase," Applied Optics, Vol. 56, No. 20, 5655-5660, 2017.
doi:10.1364/AO.56.005655 Google Scholar
9. Lambeck, P. V., "Integrated optical sensors for the chemical domain," Institute of Physics Publishing. Measurement Science and Technology, Vol. 17, R93-R116, 2006.
doi:10.1088/0957-0233/17/8/R01 Google Scholar
10. Kehl, F., et al. "Design of a label-free, distributed Bragg grating resonator based dielectric waveguide biosensor," Photonics, Vol. 2, 124-138, 2015.
doi:10.3390/photonics2010124 Google Scholar
11. Sahoo, P. K., et al. "High sensitivity guided-mode resonance optical sensor employing phase detection," Nature Scientific Reports, 1-7, 2017. Google Scholar
12. Dutta, et al., Planar Waveguide Optical Sensors. From Theory to Applications, Chapter 2, Springer International Publishing, 2016, ISBN 978-3-319-35140-7.
13. Taleb, H. and M. K. Moravvej-Farshi, "Designing a low-threshold quantum-dot laser based on a slow-light photonic crystal waveguide," Applied Optics, Vol. 56, No. 35, 9629-9636, 2017.
doi:10.1364/AO.56.009629 Google Scholar
14. Delonge, T. and H. Fouckhardt, "Integrated optical detection cell based on bragg reflecting waveguides," Journal of Chromatography A, Vol. 716, 135-139, 1995.
doi:10.1016/0021-9673(95)00611-P Google Scholar
15. Veldhuisy, G. J., et al. "An integrated optical Bragg-reflector used as a chemo-optical sensor," Pure Appl. Opt., Vol. 7, L23-L26, 1998.
doi:10.1088/0963-9659/7/1/004 Google Scholar
16. Parker, R. M., et al. "An integrated optofluidic Bragg grating device to measure the dynamic composition of a fluid system," OSA/CLEO/QELS, 2010. Google Scholar
17. Calixto, S., et al. "Diffraction grating-based sensing optofluidic device for measuring the refractive index of liquids," Opt. Express, Vol. 24, No. 1, 180-190, 2016.
doi:10.1364/OE.24.000180 Google Scholar
18. Neustock, L. T., et al. "Optical waveguides with compound multiperiodic grating nanostructures for refractive index sensing," Journal of Sensors, Article ID 6174527, 11 pages, 2016. Google Scholar
19. Hong, Y.-S., et al. "Characterization of a functional hydrogel layer on a silicon-based grating waveguide for a biochemical sensor," Sensors, Vol. 16, No. 914, 1-9, 2016. Google Scholar
20. Pottier, P., et al. "Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 1, 11-16, 2015. Google Scholar
21. Taya, S. A. and S. A. Shaheen, "Binary photonic crystal for refractometric applications (TE case)," Indian Journal of Physics, Vol. 92, No. 4, 519-527, 2018, Doi: https://doi.org/10.1007/s12648-017-1130-z.
doi:10.1007/s12648-017-1130-z Google Scholar
22. Chen, Y., et al. "Planar photonic crystal based multifunctional sensors," Applied Optics, Vol. 56, No. 6, 1771-1780, 2017.
doi:10.1364/AO.56.001775 Google Scholar
23. Sun, F., et al. "Ultra-compact air-mode photonic crystal nanobeam cavity integrated with bandstop filter for refractive index sensing," Applied Optics, Vol. 56, No. 15, 4363-4368, 2017.
doi:10.1364/AO.56.004363 Google Scholar
24. Sagar, H. P., et al. "Transient dynamic distributed strain sensing using photonic crystal waveguides," Applied Optics, Vol. 56, No. 28, 7877-7885, 2017.
doi:10.1364/AO.56.007877 Google Scholar
25. Ramanujam, N. R., et al. "Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal," Microsystem Technologies, 1-8, 2018, Doi: https://doi.org/10.1007/s00542-018-3947-6. Google Scholar
26. Taya, S. A., et al. "Photonic crystal with epsilon negative and double negative materials as an optical sensor," Optical and Quantum Electronics, Vol. 50, No. 5, 222-1-222-11, 2018, Doi: 10.1007/s11082-018-1487-z.
doi:10.1007/s11082-018-1487-z Google Scholar
27. Weissman, Z. and A. Hardy, "Modes of periodically segmented waveguides," Journal of Lightwave Technology, Vol. 11, No. 11, 1831-1838, 1993.
doi:10.1109/50.251181 Google Scholar
28. Ortega, D., et al. "Quasi-Modes” in periodic segmented waveguides," Journal of Lightwave Technology, Vol. 17, No. 2, 369-375, 1999.
doi:10.1109/50.744265 Google Scholar
29. Aschieri, P. and A. Picozzi, "Complex behaviour of a ray in a Gaussian index profile periodically segmented waveguide," J. Opt. A Pure Appl., 386-390, 2006.
doi:10.1088/1464-4258/8/5/004 Google Scholar
30. Rubio-Mercedes, C. E., et al. "Analysis of straight periodic segmented waveguide using the 2-D finite element method," Journal of Lightwave Technology, Vol. 32, No. 11, 2163-2169, 2014.
doi:10.1109/JLT.2014.2321047 Google Scholar
31. Sharma, M., et al. "Periodically-segmented liquid crystal core waveguides," J. Phys. D: Appl. Phys., Vol. 50, 1-5, 2017. Google Scholar
32. Weissman, Z. and I. Hendel, "Analysis of periodically segmented waveguide mode expanders," Journal of Lightwave Technology, Vol. 13, No. 10, 2053-2058, 1995.
doi:10.1109/50.469728 Google Scholar
33. Tomljenovic-Hanic, S. and J. D. Love, "Planar waveguide add/drop wavelength filters based on segmented gratings," Microwave and Optical Technology Letters, Vol. 37, No. 3, 163-165, 2003.
doi:10.1002/mop.10855 Google Scholar
34. Weissman, Z., "Evanescent field sensors with periodically segmented waveguides," Applied Optics, Vol. 36, No. 6, 1218-1222, 1997.
doi:10.1364/AO.36.001218 Google Scholar
35. Weissman, Z., et al. "Mach-Zehnder type, evanescent-wave bio-sensor, in ion-exchanged glass, using periodically segmented waveguide," SPIE Conference on Specialty Fiber Optics for Medical Applications, San Jose, California, SPIE, Vol. 3596, 210-216, 1999.
doi:10.1117/12.346721 Google Scholar
36. Weissman, Z., et al. "Segmented waveguides and their applications for biosensing," Integrated Optics Devices IV, Giancarlo C. Righini, Seppo Honkanen, Proceedings of SPIE, Vol. 3936, 284-292, 2000.
doi:10.1117/12.379960 Google Scholar
37. Van Lith, J., et al. "The segmented waveguide sensor: Principle and experiments," Journal of Lightwave Technology, Vol. 23, No. 1, 355-363, 2005.
doi:10.1109/JLT.2004.834982 Google Scholar