Vol. 86
Latest Volume
All Volumes
PIERC 142 [2024] PIERC 141 [2024] PIERC 140 [2024] PIERC 139 [2024] PIERC 138 [2023] PIERC 137 [2023] PIERC 136 [2023] PIERC 135 [2023] PIERC 134 [2023] PIERC 133 [2023] PIERC 132 [2023] PIERC 131 [2023] PIERC 130 [2023] PIERC 129 [2023] PIERC 128 [2023] PIERC 127 [2022] PIERC 126 [2022] PIERC 125 [2022] PIERC 124 [2022] PIERC 123 [2022] PIERC 122 [2022] PIERC 121 [2022] PIERC 120 [2022] PIERC 119 [2022] PIERC 118 [2022] PIERC 117 [2021] PIERC 116 [2021] PIERC 115 [2021] PIERC 114 [2021] PIERC 113 [2021] PIERC 112 [2021] PIERC 111 [2021] PIERC 110 [2021] PIERC 109 [2021] PIERC 108 [2021] PIERC 107 [2021] PIERC 106 [2020] PIERC 105 [2020] PIERC 104 [2020] PIERC 103 [2020] PIERC 102 [2020] PIERC 101 [2020] PIERC 100 [2020] PIERC 99 [2020] PIERC 98 [2020] PIERC 97 [2019] PIERC 96 [2019] PIERC 95 [2019] PIERC 94 [2019] PIERC 93 [2019] PIERC 92 [2019] PIERC 91 [2019] PIERC 90 [2019] PIERC 89 [2019] PIERC 88 [2018] PIERC 87 [2018] PIERC 86 [2018] PIERC 85 [2018] PIERC 84 [2018] PIERC 83 [2018] PIERC 82 [2018] PIERC 81 [2018] PIERC 80 [2018] PIERC 79 [2017] PIERC 78 [2017] PIERC 77 [2017] PIERC 76 [2017] PIERC 75 [2017] PIERC 74 [2017] PIERC 73 [2017] PIERC 72 [2017] PIERC 71 [2017] PIERC 70 [2016] PIERC 69 [2016] PIERC 68 [2016] PIERC 67 [2016] PIERC 66 [2016] PIERC 65 [2016] PIERC 64 [2016] PIERC 63 [2016] PIERC 62 [2016] PIERC 61 [2016] PIERC 60 [2015] PIERC 59 [2015] PIERC 58 [2015] PIERC 57 [2015] PIERC 56 [2015] PIERC 55 [2014] PIERC 54 [2014] PIERC 53 [2014] PIERC 52 [2014] PIERC 51 [2014] PIERC 50 [2014] PIERC 49 [2014] PIERC 48 [2014] PIERC 47 [2014] PIERC 46 [2014] PIERC 45 [2013] PIERC 44 [2013] PIERC 43 [2013] PIERC 42 [2013] PIERC 41 [2013] PIERC 40 [2013] PIERC 39 [2013] PIERC 38 [2013] PIERC 37 [2013] PIERC 36 [2013] PIERC 35 [2013] PIERC 34 [2013] PIERC 33 [2012] PIERC 32 [2012] PIERC 31 [2012] PIERC 30 [2012] PIERC 29 [2012] PIERC 28 [2012] PIERC 27 [2012] PIERC 26 [2012] PIERC 25 [2012] PIERC 24 [2011] PIERC 23 [2011] PIERC 22 [2011] PIERC 21 [2011] PIERC 20 [2011] PIERC 19 [2011] PIERC 18 [2011] PIERC 17 [2010] PIERC 16 [2010] PIERC 15 [2010] PIERC 14 [2010] PIERC 13 [2010] PIERC 12 [2010] PIERC 11 [2009] PIERC 10 [2009] PIERC 9 [2009] PIERC 8 [2009] PIERC 7 [2009] PIERC 6 [2009] PIERC 5 [2008] PIERC 4 [2008] PIERC 3 [2008] PIERC 2 [2008] PIERC 1 [2008]
2018-08-02
High-Speed Electrical Machine with Radial Magnetic Flux and Stator Core Made of Amorphous Magnetic Material. Technologies, Trends and Perspective of Development
By
Progress In Electromagnetics Research C, Vol. 86, 69-82, 2018
Abstract
This paper presents an analysis of the manufacturing technologies for the high-speed electrical machine with stator core made of amorphous magnetic material, their trends and perspective of development. The most efficient technology is determined. A design technology of sectional stator cores made of amorphous magnetic material is proposed. In addition, the paper shows the design methodology of the high-speed electrical machine with stator core made of amorphous magnetic material. A distinctive feature of the proposed technology is the implementation of the stator core made of amorphous magnetic material and laminated in the axial and radial directions. The fill factor for magnetic cores realized by this technology reaches 75%. The design methodology was tested on three prototypes of the high-speed electrical machine including the 120-kW prototype. The prototype experimental research is also presented in the paper. The main contribution is the loss minimization in the stator core made of amorphous magnetic material by 200%.
Citation
Flur R. Ismagilov, Wenming Tong, Viacheslav Vavilov, Denis Gusakov, and Valentina V. Ayguzina, "High-Speed Electrical Machine with Radial Magnetic Flux and Stator Core Made of Amorphous Magnetic Material. Technologies, Trends and Perspective of Development," Progress In Electromagnetics Research C, Vol. 86, 69-82, 2018.
doi:10.2528/PIERC18052405
References

1. Yamazaki, K. and Y. Seto, "Iron loss analysis of interior permanent magnet synchronous motors-variation of main loss factors due to driving condition," IEEE Trans. Ind. Appl., Vol. 42, No. 4, 1045-1052, Jul./Aug. 2006.
doi:10.1109/TIA.2006.876080

2. Tong, W., S. Wu, J. Sun, and L. Zhu, "Iron loss analysis of permanent magnet synchronous motor with an amorphous stator core," 2016 IEEE Vehicle Power and Propulsion Conference (VPPC), Vol. 7791716, Hangzhou, China, Oct. 2016.

3. Jensen, C. C., F. Profumo, and T. A. Lipo, "A low-loss permanent magnet brushless DC motor utilizing tape wound amorphous iron," IEEE Trans. Ind. Appl., Vol. 28, No. 3, 646-651, May/Jun. 1992.
doi:10.1109/28.137452

4. Wang, Z., R. Masaki, S. Morinaga, Y. Enomoto, H. Itabashi, M. Ito, and S. Tanigawa, "Development of an axial gap motor with amorphous metal cores," IEEE Trans. Ind. Appl., Vol. 47, No. 3, 1293-1299, May/Jun. 2011.
doi:10.1109/TIA.2011.2127430

5. Ertugrul, N., R. Hasegawa, W. L. Soong, J. Gayler, S. Kloeden, and S. Kahourzade, "A novel tapered rotating electrical machine topology utilizing cut amorphous magnetic material," IEEE Trans. Magn., Vol. 51, No. 7, 8106006, Jul. 2015.

6. "Radam motors,", [Online], available: http://www.radamllc.com/.

7. "Amorphous motors,", [Online], available: http://www.brown.edu/Departments/Engineering/Courses/ENGN1931F/AmorphousMotors.pdf.

8. Tang, R., W. Tong, and X. Han, "Overview on amorphous alloy electrical machines and their key technologies," Chinese Journal of Electrical Eng., Vol. 2, No. 1, 1-12, Jun. 2016.

9. Borisavljevic, A., H. Polinder, and J. Ferreira, "On the speed limits of permanent-magnet machines," IEEE Trans. Ind. Electron., Vol. 57, No. 1, 220-227, Aug. 2010.
doi:10.1109/TIE.2009.2030762

10. Ganev, E., "High-performance electric drives for aerospace more electric architectures," IEEE Power Engineering Society Meeting, 1-8, Tampa, FL, USA, Jul. 2007.

11. Zwyssig, C., J. W. Kolar, and S. D. Round, "Mega-speed drive systems: Pushing beyond 1 Million RPM," IEEE/ASME Trans. Mechatronics, Vol. 14, No. 5, 564-574, Oct. 2009.
doi:10.1109/TMECH.2008.2009310

12. Enomoto, Y., H. Tokoi, T. Imagawa, T. Suzuki, T. Obata, and K. Souma, "Amorphous motor with IE5 efficiency class," Hitachi Review, Vol. 64, No. 8, 60-67, 2015.

13. Caamano, R. A., "Electric motor or generator having laminated amorphous metal core,", U.S. Patent 5903082 A, Dec. 27, 1996.

14. Wang, Z., Y. Enomoto, M. Ito, R. Masaki, S. Morinaga, H. Itabashi, and S. Tanigawa, "Development of a permanent magnet motor utilizing amorphous wound cores," IEEE Trans Magn., Vol. 46, No. 2, 570-573, Feb. 2010.
doi:10.1109/TMAG.2009.2033350

15. Rührig, M., "Stator für eine elektrische Maschine und Verfahren zum Herstellen eines Stators für eine elektrische Maschine,", DE Patent 102012207508 A1, May 7, 2012.

16. DeCristofaro, N. J., D. A. Ngo, R. L. Bye, P. J. Stamatis, and G. E. Fish, "Amorphous metal stator for a radial-flux electric motor,", U.S. Patent 6960860 B1, Jun. 18, 1998.

17. McPherson, M. W. and A. D. Hirzel, "Stator used in an electrical motor or generator with low loss magnetic material and method of manufacturing a stator,", U.S. Patent 61469894, Dec. 13, 2020.

18. Hong, D. K., B. C. Woo, Y. H. Jeong, and C. W. Ahn, "Development of an ultra high speed permanent magnet synchronous motor," Int. J. Precis. Eng. Manuf., Vol. 14, No. 3, 493-499, Mar. 2013.
doi:10.1007/s12541-013-0066-2

19. Ismagilov, F. R., V. E. Vavilov, I. H. Khayrullin, and V. I. Bekuzin, "Stator magnetic core of the electromechanical energy converters with intensive cooling (variants) and the way of its manufactured,", RU Patent 2570834, Jul. 8, 2014.

20. Stannard, N., R. Martin, and G. J. Atkinson, "Analysis of a novel stator construction employing steel wire in place of laminations," IEEE Transaction on Energy Conversion, Vol. 32, No. 3, 993-1001, Sept. 2017.
doi:10.1109/TEC.2017.2680539

21. Ismagilov, F., V. Vavilov, V. Bekuzin, and V. Ayguzina, "Topology evaluation of a slotless high-speed electrical machine with stator core made of an amorphous alloy for the aerospace industry," International Review of Aerospace Engineering (IREASE), Vol. 10, No. 3, 131-139, Jun. 2017.
doi:10.15866/irease.v10i3.12615

22. Ismagilov, F., V. Vavilov, A. Miniyarov, A. Veselov, and V. Ayguzina, "Design, optimization and initial testing of a high-speed 5-kW permanent magnet generator for aerospace application," Progress In Electromagnetics Research C, Vol. 79, 225-240, 2017.
doi:10.2528/PIERC17091805

23. Uzhegov, N., J. Pyrhonen, and S. Shirinskii, "Loss minimization in high-speed permanent magnet synchronous machines with tooth-coil windings," IECON Proceedings (Industrial Electronics Conference), Vol. 45, No. 11, 2960-2965, Vienna, Austria, 2014.

24. Nagorny, A., N. Dravid, R. Jansen, and B. Kenny, "Design aspects of a high speed permanent magnet synchronous motor/generator for flywheel applications," NASA/TM-2005-213651, 1-7, 2005.

25. Yakupov, A., F. Ismagilov, I. Khayrullin, and V. Vavilov, "Method of designing high-speed generators for the biogas plant," Int. J. of Renewable Energy Research, Vol. 6, No. 2, 447-454, 2016.

26. Fang, H. and D. Wang, "A novel design method of permanent magnet synchronous generator from perspective of permanent magnet material saving," IEEE Trans. Energy Convers., Vol. 31, No. 12, 48-54, Jun. 2016.