Search Results(13669)

2009-12-14
PIER B
Vol. 19, 41-63
Degree of Roughness of Rough Layers: Extensions of the Rayleigh Roughness Criterion and Some Applications
Nicolas Pinel , Christophe Bourlier and Joseph Saillard
In the domain of electromagnetic wave propagation in the presence of rough surfaces, the Rayleigh roughness criterion is a widely-used means to estimate the degree of roughness of considered surface. In this paper, this Rayleigh roughness criterion is extended to the case of rough layers. Thus, it provides an interesting qualitative tool for estimating the degree of electromagnetic roughness of rough layers.
2009-12-14
PIER C
Vol. 11, 213-228
Implementation of Digital Radar Technology for Imaging and Remote Sensing in Intelligent Transport System
Nirmalendu Sinha , Manish Sonal , Rabindra Nath Bera and Monojit Mitra
With the growth of broadband wireless technology like code division multiple access (CDMA) and ultra-wideband (UWB), lots of development and efforts towards wireless communication system and imaging radar system are well justified. Efforts are also being imparted towards a convergence technology involving both communication and radar technology which will result in intelligent transport system (ITS) and other applications. The authors have tried to converge the communication technologies towards radar and to achieve the interference free and clutter free quality remote images of targets using DS-UWB wireless technology. In this paper, we propose a direct sequence spread spectrum (DSSS) radar for remote sensing in ITS system. We have successfully detected single target using 1D radar imaging, and also separated multiple targets and implemented DSSS radar using software defined radio (SDR) to get continuous connectivity of the system. Authors have sought down the limitations of DSSS radar which according to them can be solved by using adaptive equalizer and rake processing.
2009-12-14
PIER
Vol. 100, 69-82
A Wideband Wide-Strip Dipole Antenna for Circularly Polarized Wave Operations
Li-Pin Chi , Sheau-Shong Bor , Sheng-Ming Deng , Ching-Long Tsai , Peng-Hao Juan and Kuo-Wei Liu
A thin dipole antenna is a well-known antenna with linearly polarized wave operation. In this work, a wide-strip dipole antenna is proposed for circularly polarized wave operations. To obtain circularly polarized (CP) wave operations, there are two conditions to be satisfied. One is that the antenna must have two degenerated orthogonal modes with different resonant frequencies. The other is that the phase difference of two orthogonal modes is 90 degrees. To match the first condition, the slab width W is tuned to generate current distributions directed in two different directions. In addition, the second condition is matched by asymmetric feeding point by adjusting the overlapped square width C. The parametric study is completed by the Ansoft HFSS simulator. Simulated results reveal that the CP wave is mainly influenced by the slab width W. The influences of the parameters C and d on the performances of the proposed antenna are also investigated in this paper. Taking -8 dB as reference, there are two working bands for this proposed antenna and the measured center frequencies are 0.66 GHz and 2.04 GHz, respectively, and the corresponding bandwidths are 0.27 GHz (40%) and 1.78 GHz (87%), respectively. In addition, the measured center frequencies and bandwidths of the axial ratio are 1.94 GHz and 0.53 GHz (27%), respectively.
2009-12-14
PIER
Vol. 100, 37-54
Hybrid Method of Obtaining Degrees of Freedom for Radial Airgap Length in SRM Under Normal and Faulty Conditions Based on Magnetostatic Model
Hossein Torkaman and Seyed Ebrahim Afjei
In this paper, a new hybrid method of obtaining the degrees of freedom for redial airgap length in Switched Reluctance Motor operation under normal and faulty conditions based on magnetiostatic analysis is presented. At the beginning, this method goes through the magnetic design of the motor utilizing three dimensional (3-D) Finite Element Method (FEM) in order to consider the end effects as well as axial fringing field effects. The motor parameters, such as torque, flux linkage, flux density versus rotor position are precisely obtained. Then, a Multi Layered Perceptron Neural Network is designed by considering the nonlinear behavior of the motor parameters obtained under different modes of operatin. Using this network and the obtained parameters from FEM, an Objective Function (OF) for torque ripple with the aim of having a minimum mean square error is estimated. In addition, an improved Genetic Algorithm (GA) for the minimization the OF is also presented to determine the motor's operational regions. Finally, the legal intervals for different modes of motor operation are addressed.
2009-12-13
PIER
Vol. 100, 55-68
Planar Transformers Excited by Square Waves
Eduard Montgomery Meira Costa
This paper presents an analysis of found results in experiments developed with transformers built with planar coils, when they are excited by square waves, in comparison with transformers built with planar coils inner ring coils. The transformer was built joining two planar coils one over the other. In this kind of transformer, similar responses as analysis of transformers built with planar coil inner ring coil are found, as well the results of resonance. Because the low self-inductances and parasitic capacitances obtained in these configurations, although the coils resistance is low, which generates low exponential drops on responses. The resonance is found in higher frequencies, but satisfying conditions of sum of responses in resonance.
2009-12-13
PIER M
Vol. 10, 59-70
Enhancement of Electromagnetic Force by Localized Fields in One-Dimensional Photonic Crystal
Jian Ming Li , Tian Lin Dong and G. J. Shan
In 1-D photonic crystal with structural defects, localized mode results in strong electromagnetic fields around the position of the defect. Thus, the strong fields enhance the tangential force on a lossy dielectric layer, as well as normal force on the perfect dielectric slab. The results of this study suggest a class of micro-machines driven by electromagnetic wave, such as sunlight or microwave.
2009-12-11
PIER C
Vol. 11, 199-212
Fade Margins Prediction for Broadband Fixed Wireless Access (BFWA) from Measurements in Tropics
Md. Rafi Ul Islam , Tharek Bin Abdul Rahman , Sharul Kamal Bin Abd Rahim , Kusay Faisal Al-tabatabaie and Amuda Yusuf Abdulrahman
The fade margins for 15, 23, 26 and 38 GHz frequency bands are predicted based on one-minute rain rate measurements for four years at Universiti Teknologi Malaysia (UTM) Skudai and the specifications of the given four MINI-LINKS. The availabilities of terrestrial microwave links are also investigated based on rain attenuation data collected from seven operational microwave links at 15 GHz and one at 23 GHz for more than one year. The fade margins for all eight links are measured based on the rain attenuation data collected with different hop lengths. In this paper, the feasibility to design outage-free wireless broadband radio link also highlighted. These results will contribute to the better design of outage-free Broadband Fixed Wireless Access (BFWA) system such as, Local Multipoint Distribution Service (LMDS) and IEEE802.16 in tropical regions.
2009-12-10
PIER B
Vol. 19, 21-40
The Propagation Problem in a BI-Isotropic Waveguide
Andreas D. Ioannidis , Gerhard Kristensson and Daniel Sjöberg
We investigate the problem of defining propagating constants and modes in metallic waveguides of an arbitrary cross section, filled with a homogeneous bi-isotropic material. The approach follows the guidelines of the classical theory for the isotropic, homogeneous, lossless waveguide: starting with the Maxwell system, we formulate a spectral problem where the square of the propagation constant shows up as the eigenvalue and the corresponding mode as the eigenvector. The difficulty that arises, and this is a feature of chirality, is that the eigenvalue is involved in the boundary conditions. The main result is that the problem is solvable whenever the Dirichlet problem for the Helmholtz equation in the cross section is solvable and a technical hypothesis is fulfilled. Our method, inspired by the null-field method, is quite general and has a good potential to work in various geometries.
2009-12-10
PIER Letters
Vol. 13, 21-28
Thermal Noise Analysis of the Resistive Vee Dipole
S. Park and Kangwook Kim
The thermal noise of the resistive vee dipole (RVD) has been analyzed using a numerical model based on the method of moments. The RVD analyzed in this paper has curved arms and is loaded with surface-mount chip resistors, which approximate a modified Wu-King profile. The total noise power delivered to a 200­­­­ Ω feed line and the contribution of individual resistors to the total noise power are presented. The results show that the noise temperature of the RVD is very high and the resistors close to the drive point contribute more to the total noise power than do the resistors close to the open ends of the antenna arms.
2009-12-10
PIER Letters
Vol. 13, 11-20
Blind Direction of Angle and Time Delay Estimation Algorithm for Uniform Linear Array Employing Multi-Invariance MUSIC
Xiaofei Zhang , Gaopeng Feng and Dazhuan Xu
This paper addresses the problem of direction of arrival and time delay estimation, and derives multi-invariance MUSIC (MI-MUSIC) algorithm therein. The proposed MI-MUSIC, which only requires one-dimension searching, can avoid the high computational cost within two-dimension MUSIC (2D-MUSIC) algorithm. It means that MI-MUSIC algorithm has better performance than that of ESPRIT and MUSIC, and also can be viewed as a generalization of MUSIC. Simulation results verify the usefulness of our algorithm.
2009-12-10
PIER
Vol. 100, 27-36
Enhancement of Photonic Band Gap in a Disordered Quarter-Wave Dielectric Photonic Crystal
Chien-Jang Wu , Yu-Nian Rau and Wei-Hsieh Han
The enhancement of the photonic band gap in visible region for a disordered one-dimensional dielectric-dielectric photonic crystal (DDPC) is theoretically investigated. The DDPC is made of alternating two high/low-index quarter-wave dielectric layers stacked periodically. A disordered DDPC is modeled by randomly changing the real thicknesses, or, the optical lengths, of the two dielectrics. In a single disorder case, where the disorder only appears in one of the two constituents, it is found the photonic band gap can be preferably enhanced for the disordered high-index layer. In the double disorder stack, in which both the constituent layers are disordered, the photonic band gap can, however, be significantly enlarged. In addition, numerical results illustrate that a flat band gap can be obtained by the use of disorder in the optical length.
2009-12-09
PIER
Vol. 99, 453-463
Analysis of Finite Periodic Dielectric Gratings by the Finite-Difference Frequency-Domain Method with the Sub-Entire-Domain Basis Functions and Wavelets
Gang Zheng , Bing-Zhong Wang , Hua Li , Xiao-Fei Liu and Shuai Ding
In this paper, the finite-difference frequency-domain (FDFD) method, boundary integral equation (BIE) method and sub-entire-domain (SED) basis functions are combined to analyze scatterings from finite periodic dielectric gratings. The wavelet method is used to reduce the number of inner product operations in calculating the mutual-impedance elements between the SED basis functions. In the numerical examples, the RCS curves obtained by the method in this paper are in good agreement with those obtained by the classical full-domain FDFD method, but the computational times are largely reduced and no large matrix equation needs to be stored and solved in the former.
2009-12-09
PIER Letters
Vol. 13, 1-9
Influence of Low Intensity Coherent Electromagnetic Millimeter Radiation (EMR) on Aqua Solution of Dna
Vitaly P. Kalantaryan , Poghos O. Vardevanyan , Yu S. Babayan , E. S. Gevorgyan , S. N. Hakobyan and A. P. Antonyan
The thermostability and density of water-salt solutions of DNA, irradiated by non thermal coherent millimeter electromagnetic waves with frequency 64.5 GHz have been investigated using the methods of spectrophotometry and densitometry. It is shown that the thermostability of DNA and density of its solutions are increased, depending on time of irradiation. It is expected that under the influence of millimeter electromagnetic radiation the hydration of DNA and ions of Na+ that are present in solution decrease. As a result, the physicochemical characteristics of DNA are changed.
2009-12-09
PIER
Vol. 100, 13-26
Microwave Measurements of Dielectric Constants by Exponential and Logarithmic Mixture Equations
Jyh Sheen , Zuo-Wen Hong , Che-Wei Su and Heng-Chou Chen
This article reports on a study of the dielectric constants of ceramic dispersions in the polyethylene matrix at microwave frequency. The exponential and logarithmic mixture rules are studied in three ceramic powders of fillers with dielectric constants 10, 20, and 36, respectively. The experimental values of the dielectric constants of the mixtures are compared to those obtained by using different mixing laws. The mixing rules are also adopted to calculate the dielectric constants of pure ceramics from the measured dielectric constants of composites with various concentrations. The theories on errors of calculations are studied. The most adequate mixture equation for measuring the dielectric constants of pure ceramics is suggested.
2009-12-09
PIER
Vol. 100, 1-12
Equivalent Electrical Circuit for Designing MEMS-Controlled Reflectarray Phase Shifters
Farooq Ahmad Tahir , Herve Aubert and Etienne Girard
This article presents an equivalent electrical circuit for designing Radio-Frequency MEMS-controlled planar phase shifter. This kind of phase shifters has recently been incorporated in reconfigurable reflectarrays. The proposed equivalent circuit depends on the number, the ON/OFF state and the locations of the switches inside the unit cell. Such equivalent circuit is used for determining, with a little computational effort, the two important design parameters i.e., the number and the locations of RF-MEMS switches in the phase shifter cell. These two design parameters then allow a designer to design a phase shifter cell having a linear distribution of a given number of phases over 360° phase range at a single desired frequency.
2009-12-08
PIER
Vol. 99, 427-451
Experiments with Lanczos Biconjugate a-Orthonormalization Methods for MoM Discretizations of Maxwell's Equations
Yan-Fei Jing , Bruno Carpentieri and Ting-Zhu Huang
In this paper, we consider a novel class of Krylov projection methods computed from the Lanczos biconjugate A-Orthonormalization procedure for the solution of dense complex non-Hermitian linear systems arising from the Method of Moments discretization of Maxwell's equations. We report on experiments on a set of model problems representative of realistic radar-cross section calculations to show their competitiveness with other popular Krylov solvers, especially when memory is a concern. The results presented in this study will contribute to assess the potential of iterative Krylov methods for solving electromagnetic scattering problems from large structures enriching the database of this technology.
2009-12-08
PIER
Vol. 99, 405-426
Microwave Screen with Magnetically Controlled Attenuation
Sergey Nickolaevich Starostenko and Konstantin Rozanov
The effect of magnetic bias on dielectric spectra of composite sheets filled with Fe or Co-based microwires is studied experimentally and via simulation. The permittivity is measured using a free-space technique within the frequency band from 6 to 12 GHz. The bias is applied either parallel or perpendicular to the microwave electric field; the bias strength varies from 0 to 2.5 kOe. The composites with Fe-based wires reveal a single region of bias dependent permittivity under bias about 800-1000 Oe. The composites with Co-based wires reveal two such regions: the high-field region is close to that of composites with Fe wires, and the low-field region corresponds to the coercive field of Co wires (2-3 Oe). The high-field effect is related to the dependence of ferromagnetic resonance (FMR) parameters on bias; the low-field effect is related to the rearrangement of the domain structure of Co-based wires. The interference of magnetoimpedance and dipole resonance is analyzed, revealing the effects off wire length, diameter, parameters of magnetic resonance and composite structure. The results are considered in view of application to the problem of controlled microwave attenuation. Simulation shows that the narrower is the FMR spectrum and the higher is the admissible loss of a sheet in a transparent state, the wider is the dynamic range of attenuation control. The attenuation range of a lattice of continuous wires is smaller than that of a screen with identical wire sections, where the magnetoimpedance effect is amplified resonantly. At 15 GHz frequency the strength of the bias switching opaque sheet with Fe-based wires to the transparent state is about 2000 Oe. For 3 dB admissible loss, the range of attenuation control about 10 dB is feasible in a composite with aligned wire sections. If the aligned sections are distributed regularly, the loss in a transparent state is about 1 dB lower.
2009-12-08
PIER C
Vol. 11, 183-198
A Novel Active Antenna Beamforming Networks Using Butler Matrices
Sharul Kamal Bin Abd Rahim and Peter Gardner
In this paper, a novel architecture of using cascaded Butler Matrices (BM) integrated with Low Noise Amplifiers (LNAs) is proposed. By using the narrow beams available from the Butler Matrix, it is possible for a receiver to increase the gain in the desired signal directions and reduce the gain in interference directions. Hence, high-gain narrowbeam signals for long-range application are produced. A novel technique is introduced which uses high linearity LNAs and a second Butler Matrix, acting as a mirror of the first Butler Matrix, reconstructing the antenna patterns of the individual radiating elements. The resulting outputs have high linearity and broad beam width that can be used for short-range communication. Design of the Butler Matrix, Low Noise Amplifier, Wilkinson Power Divider and High Linearity Low Noise Amplifier are presented in this paper. A final design of active antenna beamforming network using cascaded Butler Matrices integrated with LNAs is proposed. The beamforming network provides a method, which could be applicable in vehicle communication systems, where long-range communications with roadside beacons and short-range communications with the fast moving vehicle are both required.
2009-12-08
PIER M
Vol. 10, 49-57
Design of TM0n- Mode Couplers for Diagnostics of a Vircator
M. Sumathy , S. K. Chhotray , D. Senthil Kumar , K. S. Bhat and Lalit Kumar
The waveguide and the coaxial-probe type wideband high power TM0n-mode couplers (n=1,2) were designed and qualified with respect to the coupling factor using the wheel-type mode launchers. The mode launchers and the mode couplers were simulated and experimentally tested, the former for the VSWR and the latter for the coupling factor. The coupler chamber has been used in single-shot experiments, the values of the measured frequencies of coupled output of a typical vircator agreed with those predicted values by particle-in-cell code simulation using MAFIA.
2009-12-08
PIER M
Vol. 10, 39-47
Study of Mode Propagation in Pseudochiral Transmission Lines
Hossein Hatefi-Ardakani and Jalil Rashed-Mohassel
In this paper, a generic planar transmission line filled, homogeneously, with a pseudochiral omega medium is considered. It is shown that only a uniaxial omega medium can support TE and TM modes separately. Thus, for such a medium, the fields and modal equations for TE, TM and TEM mode propagation are obtained. The special case of parallel plate waveguide is solved, and the effect of pseudochirality parameter Ω on the propagation constant and cut-off frequency is considered. For TEM propagation, an equivalent circuit is given which is different from the common isotropic transmission line model. Finally, a pseudochiral stripline is analyzed, and the elements of the equivalent circuit are calculated. The results show that the properties of the line vary as the pseudochirality parameter changes.