Vol. 10
Latest Volume
All Volumes
PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2009-12-13
Enhancement of Electromagnetic Force by Localized Fields in One-Dimensional Photonic Crystal
By
Progress In Electromagnetics Research M, Vol. 10, 59-70, 2009
Abstract
In 1-D photonic crystal with structural defects, localized mode results in strong electromagnetic fields around the position of the defect. Thus, the strong fields enhance the tangential force on a lossy dielectric layer, as well as normal force on the perfect dielectric slab. The results of this study suggest a class of micro-machines driven by electromagnetic wave, such as sunlight or microwave.
Citation
Jian Ming Li, Tian Lin Dong, and G. J. Shan, "Enhancement of Electromagnetic Force by Localized Fields in One-Dimensional Photonic Crystal," Progress In Electromagnetics Research M, Vol. 10, 59-70, 2009.
doi:10.2528/PIERM09102202
References

1. Ashkin, A., "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett., Vol. 24, 156-159, 1970.
doi:10.1103/PhysRevLett.24.156

2. Ashkin, A. and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science, Vol. 235, No. 4795, 1517-1520, 1987.
doi:10.1126/science.3547653

3. Higurashi, E., O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, "Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps," J. Appl. Phys., Vol. 82, No. 6, 2773-2779, Sep. 15, 1997.
doi:10.1063/1.366163

4. Gomez-Medina, R., P. San Jose, A. Garcia-Martin, M. Lester, M. Nieto-Vesperinas, and J. J. Saenz, "Resonant radiation pressure on neutral particles in a waveguide," Phys. Rev. Lett., Vol. 86, No. 19, 4275-4277, May 7, 2001.
doi:10.1103/PhysRevLett.86.4275

5. Mizrahi, A., "Torque and longitudinal force exerted by eigenmodes on circular waveguides," Phys. Rev. A, Vol. 78, 023802, 2008.
doi:10.1103/PhysRevA.78.023802

6. Povinelli, M. L., M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, "Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide," Appl. Phys. Lett., Vol. 85, 1466, 2004.
doi:10.1063/1.1786660

7. Sajeev, J., "Localization of light," Physics Today --- May, Vol. 44, No. 5, 32-40, 1991.
doi:10.1063/1.881300

8. Soljacic, M. and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nature Materials, Vol. 3, 211-219, 2004.
doi:10.1038/nmat1097

9. Macleod, H. A., Thin Film Optical Filters, 3rd Ed., 38-45, Institute of Physics Pub., 2001.

10. Kemp, B. A., T. M. Graegorczyk, and J. A. Kong, "Ab initio study of the radiation pressure on dielectric and magnetic media," Opt. Express, Vol. 13, No. 23, 9280-9291, 2005.
doi:10.1364/OPEX.13.009280

11. Mizrahi, A. and L. Schachter, "Electromagnetic forces on the dielectric layers of the planar optical Bragg acceleration structure," Phys. Rev. E, Vol. 74, 036504, 2006.
doi:10.1103/PhysRevE.74.036504

12. Liu, Q. N., "A new method of study the defect mode of one-dimensional photonic crystal," Laser and Infrared, Vol. 38, No. 8, 799-801, Aug. 2008.