1. Achour, M. E., M. El Malhi, J. L. Miane, F. Carmona, and F. Lahjomri, "Microwave properties of carbon black-epoxy resin composites and their simulation by means of mixture laws," J. of Applied Polymer Science, Vol. 73, 969-973, 1999.
doi:10.1002/(SICI)1097-4628(19990808)73:6<969::AID-APP14>3.0.CO;2-1 Google Scholar
2. Van Beek, L. K. H., "Dielectric behavior of heterogeneous systems," Progress in Dielectrics, Vol. 7, 69-114, 1967. Google Scholar
3. Tinga, W. R., W. A. G. Voss, and D. F. Blossey, "Generalized approach to multiphase dielectric mixture theory," J. Appl. Phys., Vol. 44, 3897-3902, 1973.
doi:10.1063/1.1662868 Google Scholar
4. Sheen, J., Z. W. Hong, W. Liu, W. L. Mao, and C. A Chen, "Study of dielectric constants of binary composites at microwave frequency by mixture laws derived from three basic particle shapes," European Polymer Journal, Vol. 45, 1316-1321, 2009.
doi:10.1016/j.eurpolymj.2008.08.002 Google Scholar
5. Wakino, K., "New proposal on mixing rule of the dielectric constant of mixture," IEEE International Symposium on Applications of Ferroelectrics, 33-38, 1994.
6. Stolzle, S., A. Enders, and G. Nimtz, "Numerical simulation of random composite dielectrics," J. Phys. I, Vol. 2, 401-408, France, 1999.
doi:10.1051/jp1:1992153 Google Scholar
7. Kim, J. B., T. W. Kim, and C. G. Kim, "Simulation method of complex permittivities of carbon balck/epoxy composites at microwave frequency band," J. of Applied Polymer Science, Vol. 100, 2189-2195, 2006.
doi:10.1002/app.23653 Google Scholar
8. Zhou, P., L. Deng, B.-I. Wu, and J. A. Kong, "Influence of scatterer's geometry on power-law formula in random mixing composites," Progress In Electromagnetics Research, Vol. 85, 69-82, 2008.
doi:10.2528/PIER08081705 Google Scholar
9. Navid, A. and L. Pilon, "Effect of polarization and morphology on the optical properties of absorbing nanoporous thin films," Thin Solid Films, Vol. 516, 4159-4167, 2008.
doi:10.1016/j.tsf.2007.10.117 Google Scholar
10. Xiang, F., H.Wang, and X. Yao, "Preparation and dielectric properties of bismuth-based dielectric/PTFE microwave composites," J. Eur. Ceram. Soc., Vol. 26, 1999-2002, 2006.
doi:10.1016/j.jeurceramsoc.2005.09.048 Google Scholar
11. Lichtenecker, K. and K. Rother, "Die herleitung des logarithmischen mischungsgesetzes als allegemeinen prinzipien der staionaren stromung," K. Phys. Zeitschrift, Vol. 32, 255-260, 1931. Google Scholar
12. Ragossnig, H. and A. Feltz, "Characterization of dielectric powders by a new defined form factor," J. Eur. Ceram. Soc., Vol. 18, 429-444, 1998.
doi:10.1016/S0955-2219(97)00146-5 Google Scholar
13. Looyenga, H., "Dielectric constants of mixtures," Physica, Vol. 31, 401-406, 1965.
doi:10.1016/0031-8914(65)90045-5 Google Scholar
14. Birchak, J. R., C. G. Gardner, J. E. Hipp, and J. M. Victor, "High dielectric constant microwave probes for sensing soil moisture," Proc. IEEE, Vol. 62, 93-98, 1974.
15. Lichtenecker, K., "Die dielektrizitatskonstante naturlicher und kunstlicher mischkorper," K. Phys. Zeitschrift, Vol. 27, 115-158, 1926. Google Scholar
16. Koledintseva, M. Y., J. L. Drewniak, R. E. DuBroff, K. N. Rozanov, and B. Archambeault, "Modeling of shielding composite materials and structures for microwave frequencies," Progress In Electromagnetics Research B, Vol. 15, 197-215, 2009.
doi:10.2528/PIERB09050410 Google Scholar
17. Huang, K. and X. Yang, "A method for calculating the effective permittivity of a mixture solution during a chemical reaction by experimental results," Progress In Electromagnetics Research Letters, Vol. 5, 99-107, 2008.
doi:10.2528/PIERL08110403 Google Scholar
18. Jylha, L. and A. H. Sihvola, "Tunability of granular ferroelectric dielectric composites," Progress In Electromagnetics Research, Vol. 78, 189-207, 2008.
doi:10.2528/PIER07081502 Google Scholar
19. Koledintseva, M. Y., R. E. DuBroff, R. W. Schwartz, and J. L. Drewniak, "Double statistical distribution of conductivity and aspect ratio of inclusions in dielectric mixtures at microwave frequencie," Progress In Electromagnetics Research, Vol. 77, 193-214, 2007.
doi:10.2528/PIER07073103 Google Scholar
20. Lou, J., T. A. Hatton, and P. E. Laibinis, "Effective dielectric properties of solvent mixtures at microwave frequencies," J. Phys. Chem. A, Vol. 101, 5262-5268, 1997.
doi:10.1021/jp970731u Google Scholar
21. Koledintseva, M. Y., S. K. R. Chandra, R. E. DuBroff, and R. W. Schwartz, "Modeling of dielectric mixtures containing conducting inclusions with statistically distributed aspect ratio," Progress In Electromagnetics Research, Vol. 66, 213-228, 2006.
doi:10.2528/PIER06110903 Google Scholar
22. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell garnett model for dielectric mixtures containing conducting particles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.
doi:10.2528/PIER06052601 Google Scholar
23. Wang, H. G. and C. H. Chan, "Mixture effective permittivity simulations using imlmqrf method on preconditioned EFIE," Progress In Electromagnetics Research, Vol. 57, 285-310, 2006.
doi:10.2528/PIER05072603 Google Scholar
24. Tinga, W. R., "Mixture laws and microwave-material interactions," Progress In Electromagnetics Research, Vol. 6, 1-40, 1992. Google Scholar
25. Sihvola, A., "Two main avenues leading to the Maxwell garnett mixing rule," Journal of Electromagnetic Waves and Applications, Vol. 15, 715-725, 2001.
doi:10.1163/156939301X00968 Google Scholar
26. Pekonen, O., K. KarkkÄainen, A. Sihvola, and K. Nikoskinen, "Numerical testing of dielectric mixing rules by FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 13, 67-87, 1999.
doi:10.1163/156939399X01618 Google Scholar
27. Hakki, B. W. and P. D. Coleman, "A dielectric resonator method of measuring inductive capacities in the millimeter range," IRE Trans. Microwave Theory Tech., Vol. 8, 402-410, 1960.
doi:10.1109/TMTT.1960.1124749 Google Scholar
28. Sheen, J., "Study of microwave dielectric properties measurements by various resonance techniques," Measurement, Vol. 37, 123-130, 2005.
doi:10.1016/j.measurement.2004.11.006 Google Scholar