Vol. 100
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2009-12-10
Enhancement of Photonic Band Gap in a Disordered Quarter-Wave Dielectric Photonic Crystal
By
Progress In Electromagnetics Research, Vol. 100, 27-36, 2010
Abstract
The enhancement of the photonic band gap in visible region for a disordered one-dimensional dielectric-dielectric photonic crystal (DDPC) is theoretically investigated. The DDPC is made of alternating two high/low-index quarter-wave dielectric layers stacked periodically. A disordered DDPC is modeled by randomly changing the real thicknesses, or, the optical lengths, of the two dielectrics. In a single disorder case, where the disorder only appears in one of the two constituents, it is found the photonic band gap can be preferably enhanced for the disordered high-index layer. In the double disorder stack, in which both the constituent layers are disordered, the photonic band gap can, however, be significantly enlarged. In addition, numerical results illustrate that a flat band gap can be obtained by the use of disorder in the optical length.
Citation
Chien-Jang Wu Yu-Nian Rau Wei-Hsieh Han , "Enhancement of Photonic Band Gap in a Disordered Quarter-Wave Dielectric Photonic Crystal," Progress In Electromagnetics Research, Vol. 100, 27-36, 2010.
doi:10.2528/PIER09111610
http://www.jpier.org/PIER/pier.php?paper=09111610
References

1. Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, "Omni-direction reflection in one dimensional photonic crystal," Progress In Electromagnetics Research B, Vol. 7, 133-143, 2008.
doi:10.2528/PIERB08020601

2. Steinberg, A. M. and R. Y. Chiao, "Subfemtosecond determination of transmission delay times for a dielectric mirror (photonic band gap) as a function of the angle of incidence ," Phys. Rev. A, Vol. 51, No. 5, 3525-3528, 1995.
doi:10.1103/PhysRevA.51.3525

3. Hattori, T., N. Tsurumachi, and H. Nakatsuka, "Analysis of optical nonlinearity by defect states in one-dimensional photonic crystals ," J. Opt. Soc. Am. B, Vol. 14, No. 2, 348-355, 1997.
doi:10.1364/JOSAB.14.000348

4. Hsu, H.-T. and C.-J. Wu, "Design rules for a Fabry-Perot narrow band transmission ¯lter containing a metamaterial negative-index defect ," Progress In Electromagnetics Research Letters, Vol. 9, 101-107, 2009.
doi:10.2528/PIERL09032803

5. Tocci, M. D., M. J. Bloemer, M. Scalora, J. P. Dowling, and C. M. Bowden, "Thin-film nonlinear optical diode ," Appl. Phys. Lett., Vol. 66, No. 18, 2324-2326, 1995.
doi:10.1063/1.113970

6. Banerjee, A., "Enhanced temperature sensing by using onedimensional ternary photonic band gap structures," Progress In Electromagnetics Research Letters, Vol. 11, 129-137, 2009.
doi:10.2528/PIERL09080101

7. Banerjee, A., "Binary number sequence multilayer structure based refractometric optical sensing element," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2439-2449, 2008.
doi:10.1163/156939308787543912

8. Awasthi, S. K., U. Malaviya, S. P. Ojha, N. K. Mishra, and B. Singh, "Design of a tunable polarizer using a one-dimensional nano sized photonic bandgap structure," Progress In Electromagnetics Research B, Vol. 5, 133-152, 2008.
doi:10.2528/PIERB08021004

9. Yeh, P. and Optical Waves in Layered Media, John Wiley & Sons, 1991.

10. Lousse, V. and S. Fan, "Tunable terahertz Bloch oscillations in chirped photonic crystals," Phys. Rev. B, Vol. 72, No. 7, 075119, 2005.
doi:10.1103/PhysRevB.72.075119

11. Bi, G. and H. Wang, "A theoretical study of the chirped and apodized photonic crystals," PIERS Online, Vol. 1, No. 5, 571-574, 2005.
doi:10.2529/PIERS041208221750

12. Wu, C.-J., B.-H. Chu, M.-T. Weng, and H.-L. Lee, "Enhancement of bandwidth in a chirped quarter-wave dielectric mirror," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 437-447, 2009.
doi:10.1163/156939309787612365

13. Wu, C.-J., B.-H. Chu, and M.-T. Weng, "Analysis of optical reflection in a chirped distributed Bragg reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 129-138, 2009.
doi:10.1163/156939309787604643

14. Orfanidis, S. J., Electromagnetic Waves and Antennas, (Rutgers University, 2008), ww.ece.rutgers.edu/»orfanidi/ewa..

15. Wang, X., X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, "Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures ," Appl. Phys. Lett., Vol. 80, No. 23, 4291-4293, 2002.
doi:10.1063/1.1484547

16. Zi, J., J. Wan, and C. Zhang, "Large frequency range of negligible transmission in one-dimensional photonic quantum well structures," Appl. Phys. Lett., Vol. 73, No. 15, 2084-2086, 1998.
doi:10.1063/1.122385

17. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional re°ection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

18. Singh, S. K., J. P. Pandey, K. B. Thapa, and S. P. Ojha, "Structural parameters in the formation of omnidirectional high reflectors ," Progress In Electromagnetics Research, Vol. 70, 53-78, 2007.
doi:10.2528/PIER07010501

19. Guida, G., "Numerical studies of disordered photonic crystals," Progress In Electromagnetics Research, Vol. 41, 107-131, 2003.
doi:10.2528/PIER02010805

20. Zhang, D., Z. Li, W. Hu, and B. Cheng, "Broadband optical re°ector-an application of light localization in one dimension," Appl. Phys. Lett., Vol. 67, No. 17, 2431-2432, 1995.
doi:10.1063/1.114597

21. Li, H., H. Chen, and X. Qiu, "Bandgap extension of disordered 1D binary photonic crystals," Physica B, Vol. 279, No. 1-3, 164-167, 2000.
doi:10.1016/S0921-4526(99)00716-4

22. Tolmachev, V. A., T. S. Perova, J. A. Pilyugina, and R. A. Moore, "Experimental evidence of photonic band gap extension for disordered 1D photonic crystals based on Si," Optics Comm., Vol. 259, No. 1, 104-106, 2006.
doi:10.1016/j.optcom.2005.08.025

23. Qi, L., Z. Yang, X. Gao, F. Lan, Z. Shi, and Z. Liang, "Bandgap extension of disordered one-dimensional metallic-dielectric photonic crystals," IEEE International Vacuum Electronics Conference, 158-159, IVEC, 2008.