Search Results(13669)

2009-11-27
PIER Letters
Vol. 12, 133-139
A Novel Dual-Band Bandstop Waveguide Filter Using Split Ring Resonators
Saeed Fallahzadeh , Hadi Bahrami and Majid Tayarani
In this paper, the potential use of split ring resonators (SRRs) to design very compact dual-band bandstop waveguide filters is proposed. Two square SRRs are placed on a same transverse plane realizing two independent reject bands. By adjusting the SRRs length, the stopbands can be targeted at the desired frequencies. In addition, a simple circuit model for this resonator is introduced. Good agreement between the experimental and full-wave simulated results has been achieved.
2009-11-27
PIER C
Vol. 11, 137-146
Spurious Response Suppression in Hairpin Filter Using CSRR Merged in the Filter Structure
Ana Afkhami and Majid Tayarani
In this paper CSRRs (complementary split-ring resonators) are used to suppress the first spurious response in microstrip hairpin filters. The CSRRs are merged in the filter structure, and therefore the filter size is not increased. The design methodology is presented, and a filter with center frequency at 3 GHz is designed, fabricated and tested as an example. The characterization of this new filter shows the efficiency of the proposed approach to improve filter response with spurious rejection up to 20dB while the size is even slightly reduced.
2009-11-26
PIER
Vol. 99, 273-287
Tunable Lateral Shift through Nonlinear Composites of Nonspherical Particles
Dongliang Gao and Lei Gao
The Goos-Hanchen (GH) shift of the reflected waves from nonlinear nanocomposites of interleaved nonspherical metal and dielectric particles are investigated both theoretically and numerically. First, based on spectral representation theory and effective medium approximation, we derive the field-dependent effective permittivity of the nonlinear composites. Then the stationary phase method is adopted to study the GH shifts from nonlinear composites. It is found that for a given volume fraction, there exist two critical polarization factors Lc1 and Lc2, and bistable GH shifts appear only when L < Lc1 or L < Lc2. Moreover, both giant negative and positive GH shifts accompanied with large reflectivity are found, hence they can be easily observed in experiments. The reversal of the GH shift may be controlled by adjusting both the incident angle and the applied field. Numerical simulations for Gaussian-type incident beam are performed, and good agreement between simulated data and theoretical ones is found especially for large waist width.
2009-11-24
PIER
Vol. 99, 261-272
Conductive Medium Modeling with an Augmented GIBC Formulation
Zhiguo Qian , Mei Song Tong and Weng Cho Chew
This paper describes an augmented generalized impedance boundary condition (AGIBC) formulation for accurate and efficient modeling of conductive media. It is a surface integral equation method, so that it uses a smaller number of unknowns. The underlying GIBC provides a rigorous way to account for the skin effect. Combining with the novel augmentation technique, the AGIBC formulation works stably in the low-frequency regime. No looptree search is required. The formulation also allows for its easy incorporation of fast algorithms to enable the solving of large problems with many unknowns. Numerical examples are presented to validate the formulation.
2009-11-23
PIER
Vol. 99, 245-260
Exploitation of TE-TM Scattering Data for Microwave Imaging through the Multi-Scaling Reconstruction Strategy
Lorenzo Poli and Paolo Rocca
In this paper, the solution of two-dimensional inverse scattering problems is addressed by probing the unknown scenarios with TE and TM waves. To better exploit the information content of the scattered data the multi-zooming approach is used. The results of experiments with single as well as multiple scatterers are reported and discussed also in comparison with single-polarization inversions.
2009-11-23
PIER
Vol. 99, 225-244
Specialty Fibers Designed by Photonic Crystals
Najmeh Nozhat and Nosrat Granpayeh
In this paper, several kinds of photonic crystal fibers (PCFs) have been proposed and characterized. Two types of PCF structures have been proposed, air holes in silica or silica rods in air in a triangular lattice around the core. It has been shown that by reshaping the cladding holes, varying the diameters of the holes in one or two rows around the core or changing the refractive index of the holes, different types of specialty fibers, such as dispersion shifted fibers (DSFs), non-zero dispersion shifted fibers (NZ-DSFs), dispersion flattened fibers (DFFs), dispersion compensating fibers (DCFs), and polarization maintaining fibers (PMFs), can be designed. The PCF core is silica to support the propagation of lightwave by total internal reflection (TIR) in the third telecommunication window. The chromatic dispersion, confinement loss and modal birefringence of the proposed specialty fibers have been numerically derived.
2009-11-23
PIER
Vol. 99, 211-224
Study STAP Algorithm on Interference Target Detect Under Nonhomogenous Environment
Qingyong Gong and Zhao-Da Zhu
In conventional statistical STAP algorithms, the existence of interference target in training samples will lead to signal cancellation, resulting in the output SCR falling and the moving target detection performance degrading. The nonhomogeneity detector is an effective way to restrain the outlier, which can improve the covariance matrix estimation by detecting the samples containing outliers and rejecting them, and improve the STAP performance. A new interference target detection algorithm is proposed in this paper, the outlier detection is realized by using the samples' data phase information. Compared with traditional method, the improved algorithm is more sensitive to interfering target with different azimuth and intensity. Simulation results demonstrate the validity of this improved method.
2009-11-23
PIER M
Vol. 9, 215-226
Compact Half U-Slot Loaded Shorted Rectangular Patch Antenna for Broadband Operation
Jamshed Ansari , Nagendra Prasad Yadav , Prabhakar Singh and Anurag Mishra
In this paper, analysis of half U-slot loaded patch antenna with shorting wall is presented. The parameters of the antenna significantly depend on slot and notch dimensions. Bandwidth of the proposed antenna is found to be 21.59%. The 3dB beamwidth of the antenna is found to be 90o at the central frequency of 2.6 GHz. The theoretical results are compared with IE3D simulated and experimental ones which are in good agreement.
2009-11-20
PIER
Vol. 99, 195-209
Convergence Study of Current Sampling Profiles for Antenna Design in the Presence of Electrically Large and Complex Platforms Using Fit-UTD Hybridization Approach
Heng-Tung Hsu , Fang-Yao Kuo and Hsi-Tseng Chou
Designing antennas in the presence of electrically large and complex structures such as cars or aircrafts has become an important issue for next generation communication systems. Based on the principle of equivalence, the hybridization approach integrating FIT-UTD techniques has shown its superiority in terms of its computing efficiency. In such approach, discrete samplings of continuous electric or magnetic field components resulted from low frequency (LF) sub-domain are required to be converted to the excitation current sources for the high frequency (HF) sub-domain. Thus, the overall accuracy of the calculation results will strongly depend on the similarities between the sampled and original field distributions with both the magnitude and phase involved. In this paper, convergence study of electric and magnetic current sampling is performed. Impact of the different sampling profiles on the overall accuracy is also investigated through numerical examples. Results reveal that convergence of the far-field radiation patterns are closely related to the sampling profiles.
2009-11-20
PIER M
Vol. 9, 199-214
Scattering by Jacket Structures Analysis via the Extended Method of Auxiliary Sources Emas
Hichem Naamen and Taoufik Aguili
This paper establishes the extension of the method of auxiliary sources EMAS for the purpose of modeling the electromagnetic scattering response by jacket cylindrical structures constituted by a finite number of dielectric eccentric cylindrical inclusions embedded in a host dielectric one. Appropriate boundary conditions mixed with judicious decomposed domains leads to the prediction of the backscattering cross section. The algorithm also integrates the global electromagnetic coupling between the inclusions. The EMAS is validated by varying the inner cylinders repartitions and fine-tuning the electric permittivity according to different geometries. The EMAS level of accuracy compared with the indirect matching mode method IMM reveals a good agreement between the numerical computation results.
2009-11-20
PIER Letters
Vol. 12, 127-132
Wideband Rod-Dipole Antenna with a Modified Feed for DTV Signal Reception
Saou-Wen Su and Fa-Shian Chang
A wideband rod-dipole antenna with a modified feed for DTV signal reception in the 470-862-MHz UHF band is presented. The antenna consists of two retractable rod-dipole arms, which are connected to the opposite top corners of the modified feed. The feed is in the shape of a rectangle with dimensions 20 mm × 40 mm and divided into two portions by a U slit. The antenna can generate nearby resonant modes to attain a wide operating band, exceeding 60% bandwidth with VSWR below 3, much larger than that of the conventional center-fed dipole antenna. In addition, with the two dipole arms designed at the production stage to be able to swivel around, the antenna radiation and polarization thereof can easily be adjusted for better DTV signal reception without moving the whole antenna structure.
2009-11-19
PIER
Vol. 99, 179-194
Ideally Hard Struts to Achieve Invisibility
Jose-Manuel Fernandez Gonzalez , Eva Rajo-Iglesias and Manuel Sierra-Castaner
In this work, ideally hard struts with different cross sections are analyzed. Firstly, the characterization of the invisibility of a given object in terms of an equivalent blockage width is discussed. Then, the effect of the incidence angle on struts for reducing electromagnetic blockage using the same ideally hard cylinders is analyzed. It is shown that the variation of incidence angle in azimuth is very sensitive in terms of blockage for both polarizations. Finally, design charts for ideally hard struts which reduce blockage simultaneously for TE and TM cases are presented. This can be used to define some performance goals for final realized struts.
2009-11-19
PIER
Vol. 99, 163-178
Exotic Characteristics of Power Propagation in the Chiral Nihility Fiber
Jian-Feng Dong
The novel characteristics of power propagation of guided modes in the chiral nihility fiber have been investigated theoretically. The formulas of electromagnetic fields in the core and cladding for guided modes are presented in detail. The dispersion equations, energy flux and power of guided modes are derived. The numerical results are given and discussed. Some exotic features of power propagation have been found in the chiral nihility fiber.
2009-11-19
PIER M
Vol. 9, 185-197
Open Resonator Technique of Non-Planar Dielectric Objects at Millimeter Wavelengths
Yong Feng Gui , Wen-Bin Dou and Kai Yin
This paper provides a reliable dielectric measurement theory of the open resonator for non-planar objects such as convex-concave objects. It is the first time that the complete analytical formulas of the complex permittivity are presented by means of the second-order theory of the open resonator and field matching method. Furthermore, a measurement system is designed and built at Ka band, and the consistency of the results between planar and non-planar samples verifies the accuracy of the new theory. Finally, the experimental error analysis is investigated.
2009-11-18
PIER
Vol. 99, 149-161
Further Study of Rainfall Effect on VHF Forested Radio-Wave Propagation with Four-Layered Model
Yu Song Meng , Yee Hui Lee and Boon Chong Ng
In this paper, rainfall effect on the VHF radio-wave propagation in a tropical forest is further studied in details. Theoretical study and experimental investigations are performed with the help of a four-layered model for forested environment. It is found that the lateral wave traveling along the air-canopy interface, the direct waves, and the ground reflected waves are the main modes for VHF radio-wave propagation in forest. The rainfall can affect these propagating waves to different extents. Especially, due to the increase in the dielectric permittivity of the wet canopy layer by rain water, the time of arrival of the direct wave traveling through the canopy layer can be delayed significantly. Finally, the dielectric permittivity for the wet canopy layer under different rain events is evaluated empirically.
2009-11-18
PIER M
Vol. 9, 177-184
Determination the Material Parameters for Arbitrary Cloak Based on Poisson's Equation
Jia-Jun Ma , Xiang-Yu Cao , Kan-Min Yu and Tao Liu
We propose a general method to determine the material parameters for arbitrary shapes of cloak based on the Poisson's equation to map the coordinate transformation. As a result, we can obtain the diverse deformation material properties and then the field distribution. This method, compared with the previous technique presented in literature, can determine the countless transformation forms, so it may provide the opportunity to choose the optimization transformation and the material parameter map which is easily to be fabricated using the metamaterial technology.
2009-11-18
PIER B
Vol. 18, 347-363
Robust Semi-Deterministic Facet Model for Fast Estimation on EM Scattering from Ocean-Like Surface
Hui Chen , Min Zhang , Ding Nie and Hong-Cheng Yin
A robust semi-deterministic facet model for the computation of the radar scattering cross section from the ocean-like surface is presented. As a facet-based theory, it is a more comprehensive model which can reflect the specular and diffuse configurations, as well as the mono- and bistatic features. Significant computational efficiency and good agreement with experimental data are observed, which makes the proposed facet model well suitable for fast estimation on EM scattering and synthetic aperture radar(SAR) imagery simulation of marine scene.
2009-11-17
PIER
Vol. 99, 131-148
Maxwell Garnett Rule for Dielectric Mixtures with Statistically Distributed Orientations of Inclusions
Marina Koledintseva , Richard E. DuBroff and Robert W. Schwartz
An analytical model of an effective permittivity of a composite taking into account statistically distributed orientations of inclusions in the form of prolate spheroids will be presented. In particular, this paper considers the normal Gaussian distribution for either zenith angle, or azimuth angle, or for both angles describing the orientation of inclusions. The model is an extension of the Maxwell Garnett (MG) mixing rule for multiphase mixtures. The resulting complex permittivity is a tensor in the general case. The formulation presented shows that the parameters of the distribution law for orientation of inclusions affect the frequency characteristics of the composites, and that it is possible to engineer the desirable frequency characteristics, if the distribution law is controlled.
2009-11-17
PIER
Vol. 99, 109-129
Synthesis of Monopulse Sub-Arrayed Linear and Planar Array Antennas with Optimized Sidelobes
Giacomo Oliveri and Lorenzo Poli
In this paper, three approaches for the synthesis of the optimal compromise between sum and difference patterns for sub-arrayed linear and planar arrays are presented. The synthesis problem is formulated as the definition of the sub-array configuration and the corresponding sub-array weights to minimize the maximum level of the sidelobes of the compromise difference pattern. In the first approach, the definition of the unknowns is carried out simultaneously according to a global optimization schema. Differently, the other two approaches are based on a hybrid optimization procedures, exploiting the convexity of the problem with respect to the sub-array weights. In the numerical validation, representative results are shown to assess the effectiveness of the proposed approaches. Comparisons with previously published results are reported and discussed, as well.
2009-11-17
PIER M
Vol. 9, 165-176
Beampattern Synthesis with Linear Matrix Inequalities Using Minimal Array Sensors
Siew Eng Nai , Wee Ser , Zhu Liang Yu and Susanto Rahardja
A new beampattern synthesis formulation is proposed to compute the minimum number of array sensors required. In order to satisfy all the prescribed specifications of the beampattern, the proposed method imposes linear matrix inequality (LMI) constraints on the beampattern as developed by Davidson et al., which remove the need to discretize the beampattern region. As the proposed formulation is quasi-convex, an iterative procedure is used to decompose it into a systematic sequence of convex feasibility problems, in order to find the minimum number of sensors. The proposed method guarantees convergence if the globally optimal solution lies in the search interval, which is easily ensured at the start of the search.