Vol. 5
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2008-02-28
An Equivalent Circuit for EMI Prediction in Printed Circuit Boards Featuring a Straight-to-Bent Microstrip Line Coupling
By
Progress In Electromagnetics Research B, Vol. 5, 107-118, 2008
Abstract
A full-wave analysis of the scattering parameters of a straight-to-bent microstrip line coupling is performed using a FEM technique. The numerical results, showing the influence played by the geometrical parameters of the structure on the electromagnetic coupling, are then employed to derive an equivalent circuit useful to be employed in CAD tools. A third order polynomial approximant useful to compute the equivalent circuit elements is finally provided.
Citation
Paolo Bernardi, Renato Cicchetti, Giuseppe Pelosi, Alberto Reatti, Stefano Selleri, and Matilde Tatini, "An Equivalent Circuit for EMI Prediction in Printed Circuit Boards Featuring a Straight-to-Bent Microstrip Line Coupling," Progress In Electromagnetics Research B, Vol. 5, 107-118, 2008.
doi:10.2528/PIERB08020502
References

1. Bryant, T. G. and J. A. Weiss, "Parameters of microstrip transmission lines and coupled pairs of microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 16, No. 12, 1021-1027, 1968.
doi:10.1109/TMTT.1968.1126858

2. Changhua, W., "Analytically and accurately determined quasistatic parameters of coupled microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 1, 75-80, 1996.
doi:10.1109/22.481387

3. Elsherbeni, A. Z., C. E. Smith, and B. Moumneh, "Minimization of the coupling between a two conductor microstrip transmission line using finite difference method," Progress In Electromagnetics Research, Vol. 12, 1-35, 1996.

4. Sabban, A. and K. C. Gupta, "A planar-lumped model for coupled microstrip lines and discontinuities," IEEE Trans. Microw. Theory Tech., Vol. 40, No. 2, 245-252, 1992.
doi:10.1109/22.120096

5. Hill, D. A., K. H. Cavecy, and R. T. Johnk, "Crosstalk between microstrip transmission lines," IEEE Trans. Electromagn. Compat., Vol. 36, No. 4, 314-321, 1994.
doi:10.1109/15.328861

6. Elsherbeni, A. Z., C. E. Smith, H. Golestanian, and S. He, "Quasistatic characteristics of a two-conductor multi-layer microstrip line with dielectric overlay and a notch between the strips," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 6, 769-789, 1993.
doi:10.1163/156939393X00877

7. Khalaj-Amirhosseini, M., "Optimum design of microstrip interconnects using additional coupling capacitance," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 973-986, 2005.
doi:10.1163/156939305775468778

8. Zheng, Q. H., P. Zhang, R. H. Li, and X. Q. Zhang, "Multipole theory analysis of rectangular shielded planar striplines," Journal Electromagnetic Waves and Applications, Vol. 20, No. 10, 1357-1366, 2006.
doi:10.1163/156939306779276776

9. Khalaj-Amirhosseini, M., "Analysis of coupled nonuniform transmission lines using short exponential or linear sections," Journal Electromagnetic Waves and Applications, Vol. 21, No. 3, 299-312, 2007.
doi:10.1163/156939307779367378

10. El-Shenawee, M. and A. Z. Elsherbeni, "Analysis of signal distortion on coupled microstrip lines with an overlay and a notch," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 12, 1627-1631, 1997.
doi:10.1163/156939397X00422

11. Matsunaga, M., M. Katayama, and K. Yasumoto, "Coupled-mode analysis of line parameters of coupled microstrip lines," Progress In Electromagnetics Research, Vol. 24, 1-17, 1999.
doi:10.2528/PIER99032902

12. Watanabe, K. and K. Yasumoto, "Coupled-mode analysis of coupled microstrip transmission lines using a singular perturbation technique," Progress In Electromagnetics Research, Vol. 25, 95-110, 2000.
doi:10.2528/PIER99042602

13. Makri, R., N. K. Uzunoglu, and M. Gargalakos, "Computation of passive finite three dimensional MMIC structures using a global method of moments approach," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 2, 159-183, 2002.
doi:10.1163/156939302X00822

14. Wu, S. C., H. Y. Yang, N. G. Alexopoulos, and I. Wolff, "A rigorous dispersive characterization of microstrip cross and T junctions," IEEE Trans. Microw. Theory Tech., Vol. 38, No. 12, 1837-1844, 1990.
doi:10.1109/22.64564

15. Gopinath, A. and C. Gupta, "Capacitance parameters of discontinuities in microstriplines," IEEE Trans. Microw. Theory Tech., Vol. 26, No. 10, 831-836, 1978.
doi:10.1109/TMTT.1978.1129495

16. Yang, H. Y., N. G. Alexopoulos, and D. R. Jackson, "Microstrip open-end and gap discontinuities in a substrate-superstrate structure," IEEE Trans. Microw. Theory Tech., Vol. 37, No. 10, 1542-1546, 1989.
doi:10.1109/22.40999

17. Cicchetti, R. and A. Faraone, "An expansion function suited for fast full-wave spectral domain analysis of microstrip discontinuities," Int. J. Microw. Millimet. Wave Comput. Aided Eng., Vol. 4, No. 3, 297-306, 1994.
doi:10.1002/mmce.4570040309

18. Arshadi, A. and A. Cheldavi, "A simple and novel model for edged microstrip line (EMTL)," Progress In Electromagnetics Research, Vol. 65, 233-259, 2006.
doi:10.2528/PIER06100401

19. Rezaiesarlak, R., F. Hodjatkashani, and E. Mehrshahi, "Analysis of capacitively coupled microstrip-ring resonator based on spectral domain method," Progress In Electromagnetics Research Letters, Vol. 3, 25-33, 2008.

20. Moore, J. and H. Ling, "Characterization of a 90 degree microstrip bend with arbitrary miter via the time-domain finite difference method," Trans. Microw. Theory Tech., Vol. 38, No. 4, 405-410, 1990.
doi:10.1109/22.52581

21. Hashemi-Nasab, M. and A. Cheldavi, "Coupling model for the two orthogonal microstrip lines in two layer PCB board (quasi-TEM approach) ," Progress In Electromagnetics Research, Vol. 60, 153-163, 2006.
doi:10.2528/PIER05040601

22. Bernardi, P., R. Cicchetti, and A. Faraone, "EMC-oriented full-wave modeling of passive MIMIC structures for wireless applications," Special Issue on Millimeter Waves of the Ann. Telecom., Vol. 52, No. 3-4, 155-163, 1997.

23. Cicchetti, R. and A. Faraone, "A full-wave radiation model for a class of gridded ground interconnecting structures," IEEE Trans. Antennas Propagat., Vol. 47, No. 1, 212-213, 1999.
doi:10.1109/8.753012

24. Martini, E., G. Pelosi, and S. Selleri, "A hybrid finite-element-modal-expansion method with a new type of curvilinear mapping for the analysis of microwave passive devices," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 6, 1712-1717, 2003.
doi:10.1109/TMTT.2003.812571

25. Limiti, E., E. Martini, G. Pelosi, M. Pierozzi, and S. Selleri, "Efficient hybrid finite elements — modal expansion method for microstrip-to-waveguide transitions analysis," Journal of Electromagnetic Waves and Applications, Vol. 15, No. 8, 1027-1035, 2001.
doi:10.1163/156939301X00373

26. Bernardi, P., R. Cicchetti, G. Pelosi, A. Reatti, S. Selleri, and M. Tatini, "Full wave analysis of straight-to-bent microstrip line coupling," EMC Europe Workshop 2005, 283-286, 2005.

27. Bilzer, H., P. Schuh, F. M. Pitsch, and W. Menzel, "A new modular design for test and application PCBs of SAW RF filters to ensure precisely predictable filter characteristics," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 12, 2712-2717, 2004.
doi:10.1109/TMTT.2004.838300

28. Graglia, R. D., D. R. Wilton, and A. F. Peterson, "Higher order interpolatory vector bases for computational electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 329-342, 1997.
doi:10.1109/8.558649

29. Cavanna, T., E. Franzese, E. Limiti, G. Pelosi, S. Selleri, and A. Suriani, "Coplanar to rectangular waveguide millimeter-waves transitions manufacturing tolerance analysis with the finite element method," Int. J. of RF and Microw. Comp. Aided Eng., Vol. 16, No. 2, 118-124, 2006.
doi:10.1002/mmce.20104

30. Chang, K., Hanbook of Microwave and Optical Components, Vol. 1, Microwave Passive and Antenna Components, John Wiley & Sons, Inc., 1997.