Vol. 18
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-11-28
Ased-AIM Analysis of Scattering by Large-Scale Finite Periodic Arrays
By
Progress In Electromagnetics Research B, Vol. 18, 381-399, 2009
Abstract
In this paper, the Adaptive Integral Method (AIM) has been extended to characterizing electromagnetic scattering by large scale finite periodic arrays with each cell comprising of either dielectric or metallic objects, by utilizing accurate sub-entire-domain (ASED) basis function. The solution process can be carried out in two steps. In the first step, a small problem is solved in order to construct ASED basis functions to be implemented for the second step. When dielectric materials are involved in the cell which results in a large number of unknowns for the small problem, the AIM can be used to accelerate the solution process and reduce the memory requirement. In the second step, the entire problem is solved using the ASED basis function constructed in the first step. The AIM can be enhanced with the ASED basis function implemented to solve the entire problem more efficiently. When calculating the near interaction impedance matrix, computation time can be significantly reduced by using the near impedance matrix in the first step. The complexity analysis shows that the computational time is O(N0 logN0) + O(M logM) and memory requirement is O(N0) + O(M), where N0 denotes the number of cells and M stands for the number of elements in one cell. The results calculated respectively by the ASED-AIM and the existing AIM are then compared and an excellent agreement has been observed, which demonstrates the accuracy of the proposed method. In the meantime, memory and computational time requirements have been considerably reduced using the ASED-AIM as compared to the existing AIM. Finally, an example with over 10 million unknowns is given to demonstrate the efficiency of the proposed method.
Citation
Li Hu, Joshua Le-Wei Li, and Tat Yeo, "Ased-AIM Analysis of Scattering by Large-Scale Finite Periodic Arrays," Progress In Electromagnetics Research B, Vol. 18, 381-399, 2009.
doi:10.2528/PIERB09101301
References

1. Rokhlin, V., "Rapid solution of integral equations of scattering theory in two dimensions," J. Comput. Phys., Vol. 86, No. 2, 414-439, Feb. 1990.
doi:10.1016/0021-9991(90)90107-C

2. Coifman, R., V. Rokhlin, and S. Wandzuraz, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Trans. Antennas Propagat., Vol. 35, No. 3, 7-12, Jun. 1993.

3. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 40, 634-641, Jun. 1992.
doi:10.1109/8.144597

4. Lu, C. C. and W. C. Chew, "A fast algorithm for solving hybrid integral equation," IEE Proceedings-H, Vol. 140, No. 6, 455-460, Dec. 1993.

5. Song, J., C.-C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," EEE Trans. Antennas Propagat., Vol. 45, No. 10, 1488-1493, Oct. 1997.
doi:10.1109/8.633855

6. Cui, T. J., W. C. Chew, G. Chen, and J. M. Song, "Efficient MLFMA, RPFMA and FAFFA algorithms for EM scattering by ery large structures," IEEE Trans. Antennas Propagat., Vol. 52, No. 3, Mar. 2004.

7. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, No. 5, 635-640, May 1986.
doi:10.1109/TAP.1986.1143871

8. Peters, T. J. and J. L. Volakis, "Application of a conjugate gradient FFT method to scattering from thin planar material plates," IEEE Trans. Antennas Propagat., Vol. 36, No. 4, 518-526, Apr. 2000.
doi:10.1109/8.1141

9. Catedra, M. F., J. G. Cuevas, and L. Nuno, "A scheme to analyze conducting plates of resonant size using the conjugate gradient method and the fast Fourier transform," IEEE Trans. Antennas Propagat., Vol. 36, No. 12, 1744-1752, Dec. 1988.
doi:10.1109/8.14396

10. Zwamborn, P. and P. V. Den Berg, "Three dimensional weak orm of the conjugate gradient FFT method for solving scattering problems," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 9, 1757-1766, 1992.
doi:10.1109/22.156602

11. Cui, T. J. and W. C. Chew, "Fast algorithm for electromagnetic scattering by buried 3-D dielectric objects of large size," IEEE Trans. Geosci. Remote Sensing, Vol. 37, 2597-2608, Sep. 1999.
doi:10.1109/36.789654

12. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1252, 1996.
doi:10.1029/96RS02504

13. Wang, C. F., F. Ling, J. Song, and J. M. Jin, "Adaptive integral solution of combined field integral equation," Microwave Opt. Technol. Lett., Vol. 19, No. 5, 321-328, Dec. 1998.
doi:10.1002/(SICI)1098-2760(19981205)19:5<321::AID-MOP3>3.0.CO;2-G

14. Zhang, Z. Q. and Q. H. Liu, "A volume adaptive integral method (VAIM) for 3-D inhomogeneous objects," IEEE Antennas and Wireless Propagat. Lett., Vol. 1, No. 5, 102-105, 2002.
doi:10.1109/LAWP.2002.805126

15. Ewe, W.-B., L.-W. Li, and M.-S. Leong, "Fast solution of mixed dielectric/conducting scattering problem using volume-surface adaptive integral method," IEEE Trans. Antennas Propagat., Vol. 52, No. 11, 3071-3077, Nov. 2004.
doi:10.1109/TAP.2004.835147

16. Ewe, W.-B., E.-P. Li, H.-S. Chu, and L.-W. Li, "AIM analysis of electromagnetic scattering by arbitrarily shaped magnetodielectric object," IEEE Trans. Antennas Propagat., Vol. 55, No. 7, 2073-2079, Jul. 2007.
doi:10.1109/TAP.2007.900263

17. Phillips, J. R. and J. White, "A precorrected-FFT method for capacitance extraction of complicated 3-D structures," Proc. of Int. Conf. on Computer-aided Design, 268-271, 1994.

18. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Transactions on Computer-aided Design of Integrated Circuits and Systems, Vol. 16, No. 10, 1059-1072, Oct. 1997.
doi:10.1109/43.662670

19. Nie, X., L. W. Li, N. Yuan, and T. S. Yeo, "Fast analysis of scattering by arbitrarily shaped three-dimensional objects using the precorrected-FFT method," Microwave Opt. Technol. Lett., Vol. 34, No. 6, 438-442, Sep. 2002.
doi:10.1002/mop.10488

20. Nie, X.-C., L.-W. Li, and N. Yuan, "Precorrected-FFT algorithm for solving combined field integral equations in electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 8, 1171-1187, 2002.
doi:10.1163/156939302X00697

21. Nie, X. C., L. W. Li, N. Yuan, T. S. Yeo, and Y. B. Gan, "A fast analysis of electromagnetic scattering by arbitrarily shaped homogeneous dielectric objects," Microwave Opt. Technol. Lett., Vol. 38, No. 2, 30-35, Jul. 2003.
doi:10.1002/mop.10962

22. Nie, X.-C., N. Yuan, L.-W. Li, T.-S. Yeo, and Y.-B. Gan, "Fast analysis of electromagnetic transmission through arbitrarily shaped airborne radomes using precorrected-FFT method," Progress In Electromagnetics Research, Vol. 54, 37-59, 2005.
doi:10.2528/PIER04100601

23. Yuan, N., T. S. Yeo, X. C. Nie, L. W. Li, and Y. B. Gan, "Analysis of scattering from composite conducting and dielectric targets using the precorrected-FFT algorithm," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 3, 499-515, 2003.
doi:10.1163/156939303767869026

24. Nie, X.-C., N. Yuan, L.-W. Li, Y.-B. Gan, and T.-S. Yeo, "A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects," IEEE Trans. Antennas Propagat., Vol. 53, No. 2, 818-824, Feb. 2005.
doi:10.1109/TAP.2004.841323

25. Nie, X.-C., L.-W. Li, N. Yuan, T.-S. Yeo, and Y.-B. Gan, "Precorrected-FFT solution of the volume integral equation for 3-D inhomogeneous dielectric objects," IEEE Trans. Antennas Propagat., Vol. 53, No. 1, 313-320, Jan. 2005.
doi:10.1109/TAP.2004.838803

26. Nie, X.-C., N. Yuan, L.-W. Li, Y.-B. Gan, and T.-S. Yeo, "A fast combined field volume integral equation solution to EM scattering by 3-D dielectric objects of arbitrary permittivity and permeability," IEEE Trans. Antennas Propagat., Vol. 54, No. 3, 961-969, Mar. 2006.
doi:10.1109/TAP.2006.869927

27. Zhang, L., N. Yuan, M. Zhang, L.-W. Li, and Y.-B. Gan, "RCS computation for a large array of waveguide slots with finite wall thickness using the mom accelerated by P-FFT algorithm," IEEE Trans. Antennas Propagat., Vol. 53, No. 9, 3101, Sep. 2005.
doi:10.1109/TAP.2005.854537

28. Zhang, M., L.-W. Li, and A.-Y. Ma, "Analysis of scattering by a large array of waveguide-fed wide-slot millimeter wave antennas using precorrected-FFT algorithm," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 11, 772-774, Nov. 2005.
doi:10.1109/LMWC.2005.858965

29. Nie, X. C., Y. B. Gan, N. Yuan, C.-F. Wang, and L.-W. Li, "An efficient hybrid method for analysis of slot array enclosed by a large radome," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 249-264, Feb. 2006.
doi:10.1163/156939306775777215

30. Yuan, N., X. C. Nie, Y. B. Gan, T.-S. Yeo, and L.-W. Li, "Accurate analysis of conformal antenna arrays with finite and curved frequency selective surfaces," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1745-1760, Dec. 2007.

31. Suter, E. and J. Mosig, "A subdomain multilevel approach for the MoM analysis of large planar antennas," Microwave Opt. Technol. Lett., Vol. 26, 270-277, Aug. 2000.
doi:10.1002/1098-2760(20000820)26:4<270::AID-MOP20>3.0.CO;2-C

32. Matekovits, L., V. Laza, and G. Vecchi, "Analysis of large complex structures with the synthetic-functions approach," IEEE Trans. Antennas Propagat., Vol. 55, No. 9, 2509-2521, Sep. 2007.
doi:10.1109/TAP.2007.904073

33. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for e±ffiient solution of method of moments matrix equations," Microwave Opt. Technol. Lett., Vol. 36, 95-100, Jan. 2003.
doi:10.1002/mop.10685

34. Yeo, J., V. V. S. Prakash, and R. Mittra, "Efficient analysis of a class of microstrip antennas using the characteristic basis function method (CBFM)," Microwave Opt. Technol. Lett., Vol. 39, 456-464, 2003.
doi:10.1002/mop.11247

35. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propagat., Vol. 56, 3440-3451, Nov. 2008.
doi:10.1109/TAP.2008.2005471

36. Lu, W., T. Cui, Z. Qian, X. Yin, and W. Hong, "Accurate analysis of large-scale periodic structures using an efficient sub-entiredomain basis function method," IEEE Trans. Antennas Propagat., Vol. 52, No. 11, 3078-3085, Nov. 2004.
doi:10.1109/TAP.2004.835143

37. Lu, W. B., T. J. Cui, X. X. Yin, Z. G. Qian, and W. Hong, "Fast algorithms for large-scale periodic structures using subentire domain basis functions," IEEE Trans. Antennas Propagat., Vol. 53, No. 3, 1154-1162, Mar. 2005.
doi:10.1109/TAP.2004.842635

38. Lu, W. B., T. J. Cui, and H. Zhao, "Acceleration of fast multipole method for large-scale periodic structures with finite sizes using sub-entire-domain basis functions," IEEE Trans. Antennas Propagat., Vol. 55, No. 2, 414-421, Feb. 2007.
doi:10.1109/TAP.2006.889805