Vol. 21
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-04-25
Variable-Fidelity Design Optimization of Microwave Devices Using Multi-Dimensional Cauchy Approximation and Coarsely Discretized Electromagnetic Models
By
Progress In Electromagnetics Research B, Vol. 21, 1-26, 2010
Abstract
Application of multi-dimensional Cauchy approximation and coarse-discretization electromagnetic (EM) models to surrogate-based optimization of microwave structures is discussed. Space mapping is used as an optimization engine with the surrogate model constructed as a Cauchy approximation of the coarsely discretized device EM model. The proposed approach allows us to perform computationally efficient optimization of microwave structures without using circuit-equivalent coarse models traditionally exploited by space mapping algorithms. We demonstrate our technique through design of a range of microwave devices, including filters, antennas, and transitions. Comprehensive numerical verification of the proposed methodology is carried out with satisfactory designs obtained --- for all considered devices --- at a computational cost corresponding to a few fullwave simulations.
Citation
Slawomir Koziel, Stanislav Ogurtsov, and Mohamed H. Bakr, "Variable-Fidelity Design Optimization of Microwave Devices Using Multi-Dimensional Cauchy Approximation and Coarsely Discretized Electromagnetic Models," Progress In Electromagnetics Research B, Vol. 21, 1-26, 2010.
doi:10.2528/PIERB10031707
References

1. Bhargava, A., "Designing circuits using an EM/circuit cosimulation technique," RF Design, 76, Jan. 2005.

2. Shin, S. and S. Kanamaluru, "Diplexer design using EM and circuit simulation techniques," IEEE Microwave Magazine, Vol. 8, No. 2, 77-82, Apr. 2007.
doi:10.1109/MMW.2007.335532

3. Snyder, R. V., "Practical aspects of microwave filter devel-opment," IEEE Microwave Magazine, Vol. 8, No. 2, 42-54, Apr. 2007.
doi:10.1109/MMW.2007.335528

4. Swillam, M. A., R. H. Gohary, M. H. Bakr, and X. Li, "Efficient approach for sensitivity analysis of lossy and leaky structures using FDTD," Progress In Electromagnetics Research, Vol. 94, 197-212, 2009.
doi:10.2528/PIER09061708

5. Dehdasht-Heydari, R., H. R. Hassani, and A. R. Mallahzadeh, "Quad ridged horn antenna for UWB applications," Progress In Electromagnetics Research, Vol. 79, 23-38, 2008.
doi:10.2528/PIER07091602

6. Fallahi, R., A. A. Kalteh, and M. G. Roozbahani, "A novel UWB elliptical slot antenna with band-notched characteristics," Progress In Electromagnetics Research, Vol. 82, 127-136, 2008.
doi:10.2528/PIER08022603

7. Yin, X.-C., C.-L. Ruan, C.-Y. Ding, and J.-H. Chu, "A compact ultra-wideband microstrip antenna with multiple notches," Progress In Electromagnetics Research, Vol. 84, 321-332, 2008.
doi:10.2528/PIER08072801

8. Neyestanak, A. A. L., "Ultra wideband rose leaf microstrip patch antenna," Progress In Electromagnetics Research, Vol. 86, 155-168, 2008.
doi:10.2528/PIER08090201

9. Chen, D. and C.-H. Cheng, "A novel compact ultra-wideband (UWB) wide slot antenna with via holes," Progress In Electromagnetics Research, Vol. 94, 343-349, 2009.
doi:10.2528/PIER09062306

10. Wu, K., "Substrate Integrated Circuits (SiCs) --- A new paradigm for future Ghz and Thz electronic and photonic systems," IEEE Circuits and Systems Society Newsletter, Vol. 3, No. 2, Apr. 2009.

11. Queipo, N. V., R. T. Haftka, W. Shyy, T. Goel, R. Vaidynathan, and P. K. Tucker, "Surrogate-based analysis and optimization," Prog. in Aerospace Sciences, Vol. 41, No. 1, 1-28, Jan. 2005.

12. Forrester, A. I. J. and A. J. Keane, "Recent advances in surrogate-based optimization," Prog. in Aerospace Sciences, Vol. 45, No. 1-3, 50-79, Jan.-Apr., 2009.
doi:10.1016/j.paerosci.2008.11.001

13. Bandler, J. W., Q. S. Cheng, S. A. Dakroury, A. S. Mohamed, M. H. Bakr, K. Madsen, and J. Søndergaard, "Space mapping: The state of the art," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 337-361, Jan. 2004.
doi:10.1109/TMTT.2003.820904

14. Koziel, S., J. W. Bandler, and K. Madsen, "A space mapping framework for engineering optimization: Theory and implementation ," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 10, 3721-3730, Oct. 2006.
doi:10.1109/TMTT.2006.882894

15. Echeverria, D. and P. W. Hemker, "Space mapping and defect correction," CMAM the International Mathematical Journal Computational Methods in Applied Mathematics, Vol. 5, No. 2, 107-136, 2005.

16. Ismail, M. A., D. Smith, A. Panariello, Y. Wang, and M. Yu, "EM-based design of large-scale dielectric-resonator filters and multiplexers by space mapping," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 1, 386-392, Jan. 2004.
doi:10.1109/TMTT.2003.820900

17. Amari, S., C. LeDrew, and W. Menzel, "Space-mapping optimization of planar coupled-resonator microwave filters," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 5, 2153-2159, May 2006.
doi:10.1109/TMTT.2006.872811

18. Rayas-Sanchez, J. E. and V. Gutierrez-Ayala, "EM-based Monte Carlo analysis and yield prediction of microwave circuits using linear-input neural-output space mapping," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 12, 4528-4537, Dec. 2006.
doi:10.1109/TMTT.2006.885902

19. Zhang, X. J. and D. G. Fang, "Using circuit model from layout-level synthesis as coarse model in space mapping and its application in modelling low-temperature ceramic cofired radio frequency circuits ," Microwaves, Antennas & Propagation, IET, Vol. 1, No. 4, 881-886, Aug. 2007.
doi:10.1049/iet-map:20060201

20. Crevecoeur, G., L. Dupre, and R. van de Walle, "Space mapping optimization of the magnetic circuit of electrical machines including local material degradation ," IEEE Trans. Magn., Vol. 43, No. 6, 2609-2611.
doi:10.1109/TMAG.2007.893409

21. Zhang, X. J. and D. G. Fang, "Using circuit model from layout-level synthesis as coarse model in space mapping and its application in modelling low-temperature ceramic cofired radio frequency circuits," Microwaves, Antennas & Propagation, IET, Vol. 1, No. 4, 881-886, Aug. 2007.

22. Encica, L., J. J. H. Paulides, E. A. Lomonova, and A. J. A. Vandenput, "Aggressive output space-mapping optimization for electromagnetic actuators," IEEE Trans. Magn., Vol. 44, No. 6, 1106-1109, 2008.

23. Koziel, S., Q. S. Cheng, and J. W. Bandler, "Space mapping," IEEE Microwave Magazine, Vol. 9, No. 6, 105-122, Dec. 2008.

24. Cao, Y., L. Simonovich, and Q. J. Zhang, "A broadband and parametric model of differential via holes using space-mapping neural network," IEEE Microwave Wireless Comp. Lett., Vol. 19, No. 9, 533-535, 2009.

25. Tran, T. V., S. Brisset, and P. Brochet, "A new efficient method for global multilevel optimization combining branch-and-bound and space mapping ," IEEE Trans. Magn., Vol. 45, No. 3, 1590-1593, 2009.

26. Quyang, J., F. Yang, H. Zhou, Z. Nie, and Z. Zhao, "Conformal antenna optimization with space mapping," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 2-3, 251-260, 2010.

27. Koziel, S., J. W. Bandler, and K. Madsen, "Quality assessment of coarse models and surrogates for space mapping optimization," Optimization and Engineering, Vol. 9, No. 4, 375-391, 2008.

28. Swanson, D. G. and R. J. Wenzel, "Fast analysis and optimization of combline filters using FEM," IEEE MTT-S IMS Digest, Vol. 1159, No. 1162, Boston, MA, Jul. 2001.

29. Swanson, D. and G. Macchiarella, "Microwave filter design by synthesis and optimization," IEEE Microwave Magazine, Vol. 8, No. 2, 55-69, Apr. 2007.

30. Rautio, J. C., "EM-component-based design of planar circuits," IEEE Microwave Magazine, Vol. 8, No. 4, 79-90, Aug. 2007.

31. Rautio, J. C., "Perfectly calibrated internal ports in EM analysis of planar circuits," IEEE MTT-S Int. Microwave Symp. Dig., 1373-1376, Atlanta, GA, Jun. 2008.

32. Meng, J., S. Koziel, J. W. Bandler, M. H. Bakr, and Q. S. Cheng, "Tuning space mapping: A novel technique for engineering design optimization ," IEEE MTT-S Int. Microwave Symp. Dig., 991-994, Atlanta, GA, Jun. 2008.

33. Koziel, S., J. Meng, J. W. Bandler, M. H. Bakr, and Q. S. Cheng, "Accelerated microwave design optimization with tuning space mapping ," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 2, 383-394, 2009.

34. Koziel, S. and J. W. Bandler, "Automated tuning space mapping implementation for rapid design optimization of microwave structures," International Review of Progress in Applied Computational Electromagnetics, ACES 2009, 138-143, Monterey, CA, Mar. 8-2, 2009.

35. Cheng, Q. S., J. W. Bandler, and S. Koziel, "Tuning space mapping optimization exploiting embedded surrogate elements," IEEE MTT-S Int. Microwave Symp. Dig., 1257-1260, Boston, MA, Jun. 2009.

36. Koziel, S., "Efficient optimization of microwave circuits using shape-preserving response prediction," IEEE MTT-S Int. Microwave Symp. Dig., 1569-1572, Boston, MA, 2009.

37. Koziel, S., J. W. Bandler, and K. Madsen, "Space mapping with adaptive response correction for microwave design optimization," IEEE Trans. Microwave Theory Tech., Vol. 57, No. 2, 478-486, 2009.

38. Shakerm, G. S. A., M. H. Bakr, N. Sangary, and S. Safavi-Naeini, "Space mapping-based optimization exploiting tolerant Cauchy approximations ," IEEE MTT-S IMS Digest, 521-524, Boston, MA, Jun. 2009.

39. Kottapalli, K., T. K. Sarkar, Y. Hua, E. K. Miller, and G. J. Burke, "Accurate computation of wide-band response of electromagnetic systems utilizing narrow-band information," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 4, 682-687.

40. Peikm, S. F., R. R. Mansour, and Y. L. Chow, "Multidimensional Cauchy method and adaptive sampling for an accurate microwave circuit modeling," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 2, 2364-2371, 1998.

41. Lamecki, A., P. Kozakowski, and M. Mrozowski, "Efficient implementation of the Cauchy method for automated CAD model construction ," IEEE Microwave and Wireless Comp. Lett., Vol. 13, No. 7, 268-270, 2003.

42. Shaker, G. S. A., M. H. Bakr, N. Sangary, and S. Safavi-Naeini, "Accelerated antenna design methodology exploiting parameterized Cauchy models," Progress In Electromagnetics Research, Vol. 99, 279-309, 2009.

43. Cheng, Q. S., J. W. Bandler, and S. Koziel, "Combining coarse and fine models for optimal design," Microwave Magazine, Vol. 9, No. 1, 79-88, Feb. 2008.

44. Koziel, S. and J. W. Bandler, "Space-mapping optimization with adaptive surrogate model," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 3, 541-547, Mar. 2007.

45. Koziel, S. and J. W. Bandler, "Coarse and surrogate model assessment for engineering design optimization with space mapping," IEEE MTT-S Int. Microwave Symp. Dig., 107-110, Honolulu, HI, 2007.

46., Agilent ADS, Version 2008, Agilent Technologies, 95403-1799, 1400 Fountaingrove Parkway, Santa Rosa, CA, 2008.

47. Zhu, J., J. W. Bandler, N. K. Nikolova, and S. Koziel, "Antenna optimization through space mapping," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 3, 651-658, Mar. 2007.

48. Golub, G. H. and C. F. V. Loan, "Matrix Computations," The Johns Hopkins Univ. Press, 1996, London, UK, 2003.

49. Lamecki, A., P. Kozakowski, and M. Mrozowski, "Multimode, multiparametric surrogate models for fast design of waveguide components," European Microwave Conference Proceedings, 1369-1372.

50. Traina, D., G. Macchiarella, and T. K. Sarkar, "Robust ormulations of the Cauchy method suitable for microwave duplexers modeling ," IEEE Trans. Microwave Theory Tech., Vol. 55, No. 5, 974-982, May 2007.

51. Manchec, A., C. Quendo, J.-F. Favennec, E. Rius, and C. Person, "Synthesis of capacitive-coupled dual-behavior resonator (CCDBR) filters ," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2346-2355, Jun. 2006.

52. FEKO®, "User's Manual,", Suite 5.3, EM Software & Systems-S.A. (Pty) Ltd, 32 Techno Lane, Technopark, Stellenbosch, 7600, South Africa, 2008, http://www.feko.info.

53., CST Microwave Studio, Ver. 2009, CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany, 2009.

54., FR408 Bulletin, Isola Group, 2006.

55. Golja, B., H. B. Sequeira, S. Duncan, G. Mendenilla, and N. E. Byer, "A coplanar-to-microstrip transition for W-band circuit fabrication with 100-¹m-thick GaAs wafers," IEEE Microwave and Guided Wave Letters, Vol. 3, No. 2, 29-31, Feb. 1993.

56. Hsieh, L. H. and K. Chang, "Tunable microstrip bandpass filters with two transmission zeros," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 2, 520-525, Feb. 2003.