Vol. 24
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2010-08-17
Electromagnetic Modeling of Outcoupling Efficiency and Light Emission in Near-Infrared Quantum Dot Light Emitting Devices
By
Progress In Electromagnetics Research B, Vol. 24, 263-284, 2010
Abstract
We report an analytical exciton emission model based on Green function for simulating the radiation characteristics of near-infrared Quantum Dot-light emitting devices (QD-LEDs). In this model the internally emitted light can be classified into the following modes: substrate, indium tin oxide (ITO)/organic waveguided, surface plasmonic modes, and external emitted mode. We investigate the influence of the thickness of different layers and the distance between the emitting center and the cathode metal on the emitted power distribution among these modes. In addition, we study the angular radiation profile for the externally emitted radiation and substrate waveguided mode in comparison with lambartian radiation profile. We show the change of the thickness of the different layers, and the positions of the emitting centers are critical to the optical performance of the device. The optimization of optical performance through device geometry increases the outcoupling efficiency more than five times.
Citation
Ahmed E. Farghal, Swelem Wageh, and Atef El-Sayed Abou El-Azm, "Electromagnetic Modeling of Outcoupling Efficiency and Light Emission in Near-Infrared Quantum Dot Light Emitting Devices," Progress In Electromagnetics Research B, Vol. 24, 263-284, 2010.
doi:10.2528/PIERB10070206
References

1. Konstantatos, G., C. Huang, L. Levina, Z. Lu, and E. H. Sargent, "Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots," Advanced Functional Materials, Vol. 15, No. 11, 1865-1869, 2005.
doi:10.1002/adfm.200500379

2. Stok, A. and E. H. Sargent, "Lighting the local area: Optical code-division multiple access and quality of service provisioning," IEEE Network, Vol. 14, No. 6, 42-46, 2000.
doi:10.1109/65.885669

3. Steckel, J. S., S. Coe-Sullivan, V. Bulovic, and M. G. Bawendi, "1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device," Advanced Materials, Vol. 15, No. 21, 1862-1866, 2003.
doi:10.1002/adma.200305449

4. Tessler, N., V. Medvedev, M. Kazes, S. Kan, and U. Banin, "Efficient near-infrared polymer nanocrystal light-emitting diodes," Science, Vol. 295, No. 5599, 1506-1508, 2002.
doi:10.1126/science.1068153

5. Bakueva, L. and S. Musikhin, "Size-tunable infrared (1000--1600nm) electroluminescence from PbS quantum-dot nanocrystals in a semiconducting polymer," Appl. Phys. Lett., Vol. 82, No. 17, 2895-2897, 2003.
doi:10.1063/1.1570940

6. McDonald, S. A., P. W. Cyr, L. Levina, and E. H. Sargent, "Photoconductivity from PbS-nanocrystal/semiconducting polymer composites for solution-processible, quantum-size tunable infrared photodetectors," Appl. Phys. Lett., Vol. 85, No. 11, 2089-2091, 2004.
doi:10.1063/1.1792380

7. Liu, H. C., M. Gao, J. McCaffrey, Z. R. Wasilewski, and S. Fafard, "Quantum dot infrared photodetectors," Appl. Phys. Lett., Vol. 78, No. 1, 79-81, 2001.
doi:10.1063/1.1337649

8. Böberl, M., M. V. Kovalenko, G. Pillwein, G. Brunthaler, and W. Heiss, "Quantum dot nanocolumn photodetectors for light detection in the infrared," Appl. Phys. Lett., Vol. 92, No. 26, 261113, 2008.
doi:10.1063/1.2949084

9. McDonald, S. A., G. Konstantatos, S. G. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, "Solution-processed PbS quantum dot infrared photodetectors and photovoltaics," Nature Materials, Vol. 4, 138-142, 2005.
doi:10.1038/nmat1299

10. Klem, E. J. D., L. Levina, and E. H. Sargent, "PbS quantum dot electroabsorption modulation across the extended communications band 1200--1700nm," Appl. Phys. Lett., Vol. 87, 053101, 2005.
doi:10.1063/1.2001737

11. Huynh, W. U., J. J. Dittmer, and A. P. Alivisatos, "Hybrid nanorod-polymer solar cells," Science, Vol. 295, No. 5564, 2425-2427, 2002.
doi:10.1126/science.1069156

12. Klimov, V. I., A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science, Vol. 290, No. 5490, 314-317, 2000.
doi:10.1126/science.290.5490.314

13. Schaller, R. D., M. A. Petruska, and V. I. Klimov, "Tunable near-infrared optical gain and amplified spontaneous emission using PbSe nanocrystals," J. Phys. Chem. B, Vol. 107, No. 50, 13765-13768, 2003.
doi:10.1021/jp0311660

14. Lin, Y.-M. and M. S. Dresselhaus, "Thermoelectric properties of superlattice nanowires," Physical Review B, Vol. 68, No. 7, 075304, 2003.
doi:10.1103/PhysRevB.68.075304

15. Gaponik, N., I. L. Radtchenko, M. R. Gerstenberger, Y. A. Fedutik, G. B. Sukhorukov, and A. L. Rogach, "Labeling of biocompatible polymer microcapsules with near-infrared emitting nanocrystals," Nano Letters, Vol. 3, No. 3, 369-372, 2003.
doi:10.1021/nl0259333

16. Bourdakos, K. N., D. M. N. M. Dissanayake, T. Lutz, S. R. P. Silva, and R. J. Curry, "Highly efficient near-infrared hybrid organic-inorganic nanocrystal electroluminescence device," Appl. Phys. Lett., Vol. 92, No. 15, 153311, 2008.
doi:10.1063/1.2909589

17. Zhao, J. L., J. A. Bardecker, A. M. Munro, M. S. Liu, Y. H. Niu, I.-K. Ding, J. D. Luo, B. Q. Chen, A. K.-Y. Jen, and D. S. Ginger, "Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer," Nano Letters, Vol. 6, No. 3, 463-467, 2006.
doi:10.1021/nl052417e

18. Lu, M.-H. and J. C. Sturn, "External coupling efficiency in planar organic light-emitting devices," Appl. Phys. Lett., Vol. 78, No. 13, 1927-1929, 2001.
doi:10.1063/1.1357207

19. Du, H., C. Chen, R. Krishnan, T. D. Krauss, J. M. Harbold, F. W. Wise, M. G. Thomas, and J. Silcox, "Optical properties of colloidal PbSe nanocrystals," Nano Letters, Vol. 2, No. 11, 1321-1324, 2002.
doi:10.1021/nl025785g

20. Bakueva, L., G. Konstantatos, L. Levina, S. Musikhin, and E. H. Sargent, "Luminescence from processible quantum dot-polymer light emitters 1100--1600 nm: Tailoring spectral width and shape," Appl. Phys. Lett., Vol. 84, No. 18, 3459-3461, 2004.
doi:10.1063/1.1737072

21. Overhof, H. and U. Rossler, "Electronic structure of PbS, PbSe, and PbTe," Phys. Stat. Sol., Vol. 37, No. 2, 691-698, 2006.

22. Chang, T.-W. F., A. Maria, P. W. Cyr, V. Sukhovatkin, L. Levina, and E. H. Sargent, "High near-infrared photoluminescence quantum efficiency from PbS nanocrystals in polymer films," Synthetic Metals, Vol. 148, No. 3, 257-261, 2005.
doi:10.1016/j.synthmet.2004.10.003

23. Wehrenberg, B. L., C. Wang, and P. Guyot-Sionnest, "Interband and intraband optical studies of PbSe colloidal quantum dots," J. Phys. Chem. B, Vol. 106, No. 41, 10634-10640, 2002.
doi:10.1021/jp021187e

24. Kim, K.-H., J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, "Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern," Appl. Phys. Lett., Vol. 89, No. 19, 191120, 2006.
doi:10.1063/1.2387862

25. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, Wiley, New York, 1991.

26. Chance, R. R., A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near metal interfaces," Advances in Chemical Physics, 1-65, S. A. R. I. Prigogine (ed.), Wiley, 1978.

27. Celebi, K., T. D. Heidel, and M. A. Baldo, "Simplified calculation of dipole energy transport in a multilayer stack using dyadic Green's functions," Optics Express, Vol. 15, No. 4, 1762-1772, 2007.
doi:10.1364/OE.15.001762

28. Hartman, R. L., S. M. Cohen, and P. T. Leung, "A note on the green dyadic calculation of the decay rates for admolecules at multiple planar interfaces," J. Chem. Phys., Vol. 110, No. 4, 2189-2194, 1999.
doi:10.1063/1.477830

29. Li, L.-W., P.-S. Kooi, M.-S. Leong, and T.-S. Yeo, "Electromagnetic dyadic Green's function in spherically multilayered media," IEEE Trans. on Microwave Theory and Techniques, Vol. 42, No. 12, 2302-2310, 1994.
doi:10.1109/22.339756

30. Lee, C.-C., M.-Y. Chang, Y.-D. Jong, T.-W. Huang, C.-S. Chu, and Y. Chang, "Numerical simulation of electrical and optical characteristicsof multilayer organic light-emitting devices," Jpn. J. Appl. Phys., Vol. 43, No. 11A, 7560-7565, 2004.
doi:10.1143/JJAP.43.7560

31. Himcinschi, C., N. Meyer, S. Hartmann, M. Gersdorff, M. Friedrich, H.-H. Johannes, W. Kowalsky, M. Schwambera, G. Strauch, M. Heuken, and D. R. T. Zahn, "Spectroscopic ellipsometric characterization of organic films obtained via organic vapor phase deposition," Appl. Phys. A, Vol. 80, No. 3, 551-555, 2005.
doi:10.1007/s00339-004-2973-7

32. Handbook of Optical Constants of Solids, E. D. Palik (ed.), Academic, New York, 1985.

33. Seth Coe, W.-K. W., M. Bawendi, and V. Bulović, "Electroluminescence from single monolayers of nanocrystals in molecular organic devices," Nature Materials, Vol. 420, 800-803, 2002.

34. Patel, N. K., S. Cinà, and J. H. Burroughes, "High-efficiency organic light-emitting diodes," IEEE J. Select. Topics Quantum Electron., Vol. 8, No. 2, 346-361, 2002.
doi:10.1109/2944.999190

35. Lu, M.-H. and J. C. Sturmb, "Optimization of external coupling and light emission in organic light-emitting devices: Modeling and experiment," J. Appl. Phys., Vol. 91, No. 2, 595-604, 2002.
doi:10.1063/1.1425448

36. Kim, H., C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, "Electrical, optical, and structural properties of indium-tin-oxide thin films for organic light-emitting devices," J. Appl. Phys., Vol. 86, No. 11, 6451-6461, 1999.
doi:10.1063/1.371708

37. Sun, Q. J., Y. A. Wang, L. S. Li, D. Y. Wang, T. Zhu, J. Xu, C. H. Yang, and Y. F. Li, "Multicoloured light-emitting diodes based on quantum dots," Nature Photonics, Vol. 1, 717-722, 2007.
doi:10.1038/nphoton.2007.226