1. Federal Communication Commission, , First Report and Order, 12 FCC 02-48, April 2002.
2. Ghassemzadeh, S. S., R. Jana, C. Rice, W. Turin, and V. Tarokh, "Measurement and Modeling of an ultra-wide bandwidth indoor channel," IEEE Trans. on Commun., Vol. 52, No. 10, 1786-1796, 2004.
doi:10.1109/TCOMM.2003.820755 Google Scholar
3. Prettie, C., D. Cheung, L. Rusch, and M. Ho, "Spatial correlation of UWB signals in a home environment," IEEE Conf. on Ultra Wideband Systems and Technologies, 65-69, May 2002.
doi:10.1109/UWBST.2002.1006320 Google Scholar
4. Keignart, J., C. Abou-Rjeily, C. Delaveaud, and N. Daniele, "UWB SIMO channel measurements and simulation," IEEE Trans. Microwave Theory and Techniques, Vol. 54, No. 4, 1812-1819, Jun. 2006.
doi:10.1109/TMTT.2006.872080 Google Scholar
5. Kunisch, J. and J. Pamp, "Measurement results and modeling aspects for the UWB radio channel," IEEE Conf. on Ultra Wideband Systems and Technologies, 19-23, May 2002.
doi:10.1109/UWBST.2002.1006310 Google Scholar
6. Street, A., L. Lukama, and D. Edwards, "Use of VNAs for wideband propagation measurements," IEE Proc., Vol. 148, No. 6, 411-415, Dec. 2001.
doi:10.1049/ip-com:20010639 Google Scholar
7. Hovinen, V., M. Hämäläinen, and T. Pätsi, "Ultra wideband indoor radio channel models: Preliminary results," IEEE Conf. on Ultra Wideband Systems and Technologies, 75-79, May 2002.
doi:10.1109/UWBST.2002.1006322 Google Scholar
8. Chong, C. C., Y. E. Kim, S. K. Yong, and S. S. Lee, "Statistical characterization of the UWB propagation channel in indoor residential environment," Wiley J. Wireless Commun. Mobile Computing, Vol. 5, No. 5, 503-512, Aug. 2005.
doi:10.1002/wcm.310 Google Scholar
9. Alvarez, A., G. Valera, M. Lobeira, R. Torres, and J. L. Garcia, "Ultra wideband channel model for indoor environments," Journal of Commun. Networks, Vol. 5, No. 4, 309-318, Dec. 2003. Google Scholar
10. Cassioli, D., A. Durantini, and W. Ciccognani, "The role of path loss on the selection of the operating bands of UWB systems," Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications, Vol. 4, 2787-2791, Barcelona, Spain, Sep. 2004. Google Scholar
11. Buehrer, R., W. Davis, A. Safaai-Jazi, and D. Sweeney, Ultra-wideband propagation measurements and modeling, DARPA NETEX Final Technical Report, Jan. 2004.
12. Molisch, A. F., "Ultrawideband propagation channels-theory, measurements and modeling," IEEE Transactions on Vehicular Technology, Vol. 54, No. 5, 1528-1545, Sep. 2005.
doi:10.1109/TVT.2005.856194 Google Scholar
13. Saleh, A. and R. A. Valenzuela, "A statistical model for indoor multipath propagation," IEEE J. Sel. Areas Commun., Vol. 5, No. 2, 128-137, Feb. 1987.
doi:10.1109/JSAC.1987.1146527 Google Scholar
14. Molisch, A. F., D. Cassioli, C. C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J. Kunisch, H. G. Schantz, K. Siwiak, and M. Z. Win, "A comprehensive standardized model for UWB propagation channels," IEEE Trans. Antennas and Propagation, Vol. 54, No. 11, 3151-3166, 2006.
doi:10.1109/TAP.2006.883983 Google Scholar
15. Ahmadi-Shokouh, J. and R. C. Qiu, "Ultra-wideband (UWB) communications channel measurements --- A tutorial review," Int. J. Ultra Wideband Communications and Systems, Vol. 1, No. 1, 11-31, 2009.
doi:10.1504/IJUWBCS.2009.026447 Google Scholar
16. Chuang, J., N. Xin, H. Huang, S. Chiu, and D. G. Michelson, "UWB radio wave propagation within the passenger cabin of a boeing 737--200 aircraft," Proc. 65th IEEE Veh. Tech. Conf., VTC2007-Spring, 496-500, Apr. 22--25, 2007. Google Scholar
17. Chiu, S., J. Chuang, and D. G. Michelson, "Characterization of UWB channel impulse responses within the passenger cabin of a boeing 737--200 aircraft," IEEE Trans on Antennas and Propagation, Vol. 58, No. 3, 935-945, Mar. 2010.
doi:10.1109/TAP.2009.2037707 Google Scholar
18. Chiu, S. and D. G. Michelson, "Effect of human presence on UWB radiowave propagation within the passenger cabin of a midsize airliner," IEEE Trans on Antennas and Propagation, Vol. 58, No. 3, 917-926, Mar. 2010.
doi:10.1109/TAP.2009.2039326 Google Scholar
19. Kaouris, A., M. Zaras, M. Revithi, N. Moraitis, and P. Constantinou, "Propagation measurements inside a B737 aircraft for in-cabin wireless networks," Proc. IEEE VTC2008-Spring, 2932-2936, May 11--14, 2008. Google Scholar
20. Spiliotopoulos, C. and A. G. Kanatas, "Path-loss and time-dispersion parameters of UWB signals in a military airplane," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 790-793, 2009.
doi:10.1109/LAWP.2009.2026591 Google Scholar
21. Promwong, S., W. Hachitani, and J.-I. Takada, "Free space link budget evaluation of UWB-IR systems," International Workshop on Ultra Wideband Systems 2004, Joint with Conference on Ultrawideband Systems and Technologies, 312-316, May 18--21, 2004. Google Scholar
22. Karedal, J., S. Wyne, P. Almers, F. Tufvesson, and A. F. Molisch, "A measurement-based statistical model for industrial ultra-wideband channels," IEEE Trans. on Wireless Commun., Vol. 6, No. 8, 3028-3037, Aug. 2007.
doi:10.1109/TWC.2007.051050 Google Scholar
23. Porrat, D. and Y. Serfaty, "Sub-band analysis of NLOS indoor channel responses," Proc. IEEE PIMRC2008, 1-5, Sep. 15--18, 2008. Google Scholar
24. Qiu., R. C and I. Lu, "Multipath resolving with frequency dependence for broadband wireless channel modeling," Proc. IEEE Int. Conf. Commun., 277-281, Dallas, TX, Jun. 1996. Google Scholar
25. Siwiak, K., H. L. Bertoni, and S. M. Yano, "Relation between multipath and wave propagation attenuation," IEE Electronic Letters, Vol. 39, 142-143, Jan. 2003.
doi:10.1049/el:20030026 Google Scholar
26. Chong, C., Y. Kim, and S. Lee, "UWB Indoor propagation channel measurements and data analysis in various types of high-rise apartments," Proc. IEEE Veh. Tech. Conf., VTC2004-Fall, 2004. Google Scholar
27. Cassioli, D., M. Z. Win, and A. F. Molisch, "The ultra-wide bandwidth indoor channel: From statistical model to simulations," IEEE J. Sel. Areas Commun., Vol. 20, No. 6, 1247-1257, 2002.
doi:10.1109/JSAC.2002.801228 Google Scholar
28. Chong, C. and S. K. Yong, "A generic statistical-based UWB channel model for high-rise apartments," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 8, 2389-2399, Aug. 2005.
doi:10.1109/TAP.2005.852505 Google Scholar
29. Ghassemzadeh, S. S., L. J. Greenstein, T. Sveinsson, and V. Tarokh, "UWB delay profile models for residential and commercial indoor environments," IEEE Trans. on Vehicular Technology, Vol. 54, No. 4, 1235-1244, Jul. 005.
doi:10.1109/TVT.2005.851379 Google Scholar
30. Greenstein, L. J., S. S. Ghassemzadeh, S.-C. Hong, and V. Tarokh, "Comparison study of UWB indoor channel models," IEEE Trans. on Wireless Communications, Vol. 6, No. 1, Jan. 2007.
doi:10.1109/TWC.2007.04691 Google Scholar
31. Alvarez, A., G. Valera, M. Lobeira, R. Torres, and J. L. Garcia, "New channel impulse response model for UWB indoor system simulations," Proc. VTC 2003 Spring, 1-5, 2003. Google Scholar
32. Pagani, P. and P. Pajusco, "Experimental assessment of the UWB channel variability in a dynamic indoor environment," Proc. IEEE PIMRC, Vol. 4, 2973-2977, 2004. Google Scholar
33. Braun, W. R. and U. Dersch, "A physical mobile radio channel model," IEEE Trans. on Vehicular Technology, Vol. 40, No. 2, 472-482, May 1991.
doi:10.1109/25.289429 Google Scholar
34. Beckmann, P. and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces, Macmillan, 1963.
35. Yacoub, M. D., "The α-μ distribution: A physical fading model for the stacy distribution," IEEE Trans. on Vehicular Technology, Vol. 56, No. 1, 27-34, Jan. 2007.
doi:10.1109/TVT.2006.883753 Google Scholar