1. Visimax Technologies, Twinsburg, , Ohio, http://visimaxtechno-logies.com/anti-reflection-visiclear/.
doi:10.1126/science.283.5401.520
2. Walheim, S., E. Schaffer, J. Mlynek, and U. Steiner, "Surface-induced structure formation of polymer blends on patterned substrates," Science, Vol. 283, 520, 1999.
doi:10.1088/0957-4484/8/2/002 Google Scholar
3. Lalanne, P. and G. M. Morris, "Antireflection behavior of silicon subwavelength periodic structures for visible light," Nanotechnology, Vol. 8, 53. Google Scholar
4. Koenig, G. A. and N. G. Niejelow, "Ultra low residual reflection, low stress lens coating,", United States Patent, No. US 7311938 B2, Dec. 25, 2007 .
doi:10.1038/nnano.2007.389 Google Scholar
5. Huang, Y.-F., S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C. H. Hsu, Y. H. Chang, C.-S. Lee, and K.-H. Che, "Improved broadband and quasi-omnidirectional antire°ection properties with biomimetic silicon nanostructures," Nat. Nanotechnol., Vol. 2, 770, 2007.
doi:10.1039/b821967b Google Scholar
6. Li, Y., J. Zhang, S. Zhu, H. Dong, Z. Wang, Z. Sun, J. Guo, and B. Yang, "Bioinspired silicon hollow-tip arrays for high performance broadband anti-reflective and water-repellent coatings," J. Mater. Chem., Vol. 19, 1806, 2009.
doi:10.1063/1.2767990 Google Scholar
7. Wang, S., X. Z. Yu, and and H. T. Fan, "Simple lithographic approach for subwavelength structure antireflectio ," Appl. Phys. Lett., Vol. 91, 061105, 2007. Google Scholar
8. Gombert, A., W. Glaubitt, K. Rose, J. Dreibholz, B. Blasi, A. Heinzel, D. Sporn, W. Doll, and V. Wittwer, "Subwavelength-structured antireflective surfaces on glass," Appl. Phys. Lett., Vol. 351, 73, 1999.
doi:10.1002/adma.200601438 Google Scholar
9. Wu, Z., J. Walish, A. Nolte, L. Zhai, R. E. Cohen, and M. F. Rubner, "Deformable antireflection coatings from polymer and nanoparticle multilayers," Adv. Mater., Vol. 18, 2699, 2006.
doi:10.1002/adma.200305617 Google Scholar
10. Koo, H. Y., D. K. Yi, S. J. Yoo, and D.-Y. Kim, "Snowman-like array of colloidal dimers for antireflecting surfaces," Adv. Mater., Vol. 16, 274, 2004. Google Scholar
11. Ramm, A. G., "Electromagnetic wave scattering by a thin layer in which many small particles are embedded," Progress In Electromagnetics Research Letters, Vol. 19, 147-154, 2010. Google Scholar
12. Xi, J.-Q., F. M. Schubert, J. K. Kim, et al., "Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection," Nature Photonics, Vol. 1, No. 176, 2007. Google Scholar
13. Garcia-Vidal, F. J., "Metamaterials-Towards the dark side," Nature Photonics, Vol. 2, No. 215, 2008.
doi:10.1070/QE2009v039n12ABEH014143 Google Scholar
14. Shalin, A. S. and S. G. Moiseev, "Controlling interface reflectance by a monolayer of nanoparticles," Quantum Electron., Vol. 39, 1175, 2009.
doi:10.1134/S106377610710010X Google Scholar
15. Gadomskii, O. N. and A. S. Shalin, "Effect of optical blooming of a nanocrystal monolayer and the interface between two media," Journal of Experimental and Theoretical Physics, Vol. 105, No. 4, 761, 2007. Google Scholar
16. Yanagishita, T., K. Nishio, and H. Masuda, "Anti-reflection structures on lenses by nanoimprinting," Using Ordered Anodic Porous Alumina Appl. Phys. Express, Vol. 2, 022001, 2009. Google Scholar
17. Mishchenko, M. I., L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles, Cambridge University Press, Cambridge, 2002.
doi:10.1016/0040-6090(93)90468-5
18. Haarmans, M. T. and D. Bedeaux, "The polarizability and the optical properties of lattices and random distributions of small metal spheres on a substrate," Thin Solid Films, Vol. 224, 117, 1993.
doi:10.1002/andp.19083300302 Google Scholar
19. Mie, G., "Beitrage zur Optik truber medien, speziell kolloidaler metallosungen," Ann. Phys., Vol. 25, 377, 1908.
doi:10.1134/S0021364009160073 Google Scholar
20. Shalin, A. S., "Effect of the absolute transparency of an ordered nanocomposite," JETP Lett., Vol. 90, 257, 2009. Google Scholar
21. Shalin, A. S., "Broadband blooming of a medium modified by an incorporated layer of nanocavities," JETP Lett., Vol. 91, 637, 2010. Google Scholar
22. Arfken, G. B. and H. J. Weber, Mathematical Methods for Physicists, Acad. Press, New York, 1995.
23. Fleming, A. H. J., "A finite element method for composite scatterers," Progress In Electromagnetics Research, Vol. 2, 69-112, 1990. Google Scholar
24. Zhai, Y.-B. and T.-J. Cui, "Three-dimensional axisymmetric invisibility cloaks with arbitrary shapes in layered-medium background," Progress In Electromagnetics Research B, Vol. 27, 151-163, 2011. Google Scholar
25. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-Domain Method, Artech House, Boston, 2000.
doi:10.1364/JOSAA.16.001131
26. Prather, D. W. and S. Shi, "Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements," Opt. Soc. Am. A, Vol. 16, 1131, 1999.
doi:10.2528/PIER09061102 Google Scholar
27. Lin, Z., X. Zhang, and G. Fang, "Theoretical model of electromagnetic scattering from 3D multi-layer dielectric media with slightly rough surfaces," Progress In Electromagnetics Research, Vol. 96, 37-62, 2009.
doi:10.1364/OPEX.13.002668 Google Scholar
28. Curry, A., G. Nusz, A. Chilkoti, and A. Wax, "Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy," Opt. Express, Vol. 13, 2668, 2005.
doi:10.1134/S0030400X09060228 Google Scholar
29. Shalin, A. S. and S. G. Moiseev, "Optical properties of nanostructured layers on the surface of an underlying medium," Optics and Spectroscopy, Vol. 106, No. 6, 916, 2009. Google Scholar
30. Born, M. and E. Wolf, Principles of Optics, Pergamon, Pergamon, Oxford, 1969.
doi:10.2528/PIER08092803
31. Zhang, G.-H., M. Xia, and C. H. Chan, "Time domain integral equation approach for analysis of transient responses by metallic-dielectric composite bodies," Progress In Electromagnetics Research, Vol. 87, 1-14, 2008.
doi:10.2528/PIER04071301 Google Scholar
32. Yla-Oijala, P., M. Taskinen, and J. Sarvas, "Surface integral equation method for general composite metallic and dielectric structures with junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005. Google Scholar
33. COMSOL Multiphysics 3.4, COMSOL AB, , Stockholm, Sweden; http://www.comsol.com/products/multiphysics/.
34. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.
doi:10.1103/PhysRevB.71.134304
35. Evlyukhin, A. B. and S. I. Bozhevolnyi, "Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations," Phys. Rev. B., Vol. 71, 134304, 2005.
doi:10.1134/S0031918X06050024 Google Scholar
36. Gadomskii, O. N. and A. S. Shalin, "Optical near-field resonances in the system of interacting nanoparticles," The Physics of Metals and Metallography, Vol. 101, No. 5, 425, 2006.
doi:10.1103/PhysRevB.44.7917 Google Scholar
37. Poppe, G. P. M., C. M. J. Wijers, and A. Silfhout, "Ir spectroscopy of CO physisorbed on NaCl (100): Microscopic treatment," Phys. Rev. B, Vol. 44, No. 15, 7917-7929, 1991.
doi:10.1103/PhysRevB.46.7605 Google Scholar
38. Wijers, C. M. J. and G. P. M. Poppe, "Microscopic treatment of the angular dependence of surface induced optical anisotropy," Phys. Rev. B, Vol. 46, No. 2, 7605-7620, 1992. Google Scholar
39. Milton, G. W., The Theory of Composites, Cambridge University Press, Cambridge, 2004.
40. Zaimidoroga, O. A., V. N. Samoilov, and I. E. Protsenko, "The problem of realization of a high refractive index and the optical properties of heterogeneous media," Phys. Part. Nucl., Vol. 33, 52, 2002. Google Scholar
41. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, New York, 1985.
doi:10.1364/OE.18.013063
42. Song, Y. M., H. J. Choi, J. S. Yu, and Y. T. Lee, "Design of highly transparent glasses with broadband antireflective subwavelength structures," Opt. Express, Vol. 18, No. 12, 13063, 2010.
doi:10.1364/OL.31.000601 Google Scholar
43. Xi, J.-Q., J. K. Kim, E. F. Schubert, D. Ye, T.-M. Lu, S.-Y. Lin, and J. S. Juneja, "Very low-refractive-index optical thin films consisting of an array of SiO2 nanorods," Opt. Lett., Vol. 31, No. 5, 601, 2006.
doi: --- Either ISSN/ISBN or Series/Volume title must be supplied. Google Scholar