1. "http://www.cancer.org/Research/CancerFactsFigures/CancerFa-ctsFigures/cancer-facts-and-figures-2010,". Google Scholar
2. Srinivasan, R., D. Kumar, and M. Singh, "Optical characterization and imaging of biological tissues," Current Science, Vol. 87, 218-227, 2004.
doi:10.2528/PIER10061001 Google Scholar
3. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection ," Progress In Electromagentic Research, Vol. 107, 331-348, 2010.
doi:10.2528/PIER10071002 Google Scholar
4. O'Halloran, M., M. Glavin, and E. Jones, "Rotating antenna microwave imaging system for breast cancer detection," Progress In Electromagentic Research, Vol. 107, 203-217, 2010.
doi:10.2528/PIERB09080505 Google Scholar
5. O'Halloran, M., R. C. Conceicao, D. Byrne, M. Glavin, and E. Jones, "FDTD modeling of the breast: A review," Progress In Electromagentic Research B, Vol. 18, 1-24, 2009.
doi:10.1109/3.64355 Google Scholar
6. Wilson, B. C. and S. L. Jacques, "Optical reflectance and transmittance of tissues: Principles and applications," IEEE J. Quantum Electron., Vol. 26, 2186-2199, 1990.
doi:10.1109/10.121651 Google Scholar
7. Cui, W. and L. E. Ostrander, "The relationship of surface re°ectance measurements to optical properties of layered biological media ," IEEE Trans. Biomed. Eng., Vol. 39, 194-201, 1992. Google Scholar
8. Singh, M. and S. Chako, "Monte Carlo simulation of laser light scattering in mammalian organs," Current Science, Vol. 43, 1015-1019, 1997.
doi:10.1007/BF02513300 Google Scholar
9. Chacko, S. and M. Singh, "Multi-layer imaging of human organs by measurement of laser backscattered radiation," Med. Biol. Eng. Comput., Vol. 37, 278-284, 1999. Google Scholar
10. Kumar, D., S. Chacko, and M. Singh, "Monte Carlo simulation of photon scattering in biological tissue models," Indian J. Biochem. Biophys., Vol. 36, 330-336, 1999.
doi:10.1088/1742-6596/178/1/012047 Google Scholar
11. Warncke, D., E. Lewis, S. Lochmann, and M. Leahy, "A neural network based approach for determination of opticalscattering and absorption coe±cients in biological tissue," Journal of Physics Conference Series, Vol. 178, 012047, 2009. Google Scholar
12. Chakrabarti, P., S. Kumar, P. Rout, and B. G. Rappai, "A proposed MISFET photodetector," Proceeding 3rd Asia Pacific Microwave Conference, 575-578, 1990. Google Scholar
13. Kabeer, M., K. Gowri, and V. Rajamani, "Three dimensional modeling and simulation of a nano MISFET photodetector," Journal of Optoelectronics and Advanced Materials, Vol. 9, No. 9, 2879-2885, 2007.
doi:10.1109/TED.2002.801263 Google Scholar
14. Pei, G., J. Kedzierski, P. Oldiges, M. Ieong, and V. Chin-Chaun Kan, "FinFET design considerations based on 3-D simulation and analytical modeling," IEEE Trans. Electron. Devices, Vol. 49, No. 8, 1411-1419, 2002.
doi:10.1109/TED.2007.902415 Google Scholar
15. El Hamid, H. A., J. R. Guitart, V. Kilchytska, D. Flandre, and B. Iniguez, "A 3-D analytical physically based model for the subthreshold swing in undoped trigate FinFETs ," IEEE Trans. Electron Devices, Vol. 54, No. 9, 2487-2496, 2007.
doi:10.1109/TED.2007.893808 Google Scholar
16. Yang, W., Z. Yu, and L. Tian, "Scaling theory for FinFETs based on 3-D effects investigation," IEEE Trans. Electron Devices , Vol. 54, No. 5, 1140-1147, 2007.
doi:10.1016/j.sse.2005.04.017 Google Scholar
17. Shao, X. and Z. Yu, "Nanoscale FinFET simulation: A quasi-3D quantum mechanical model using NEGF," Solid-State Electronics, Vol. 49, 1435-1445, 2005.
doi:10.1016/j.sse.2006.03.018 Google Scholar
18. De Marchi, L., F. Franze, and E. Baravelli, "Wavelet-based adaptive mesh generation for device simulation," Solid-State Electronics, Vol. 50, 650-659, 2006.
doi:10.1109/22.491023 Google Scholar
19. Krumholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, 555-571, 1996.
doi:10.1109/75.761672 Google Scholar
20. Tentzeris, M. and J. Harvey, "Time adaptive time-domain techniques for the design of microwave circuits," IEEE Microwave Guided Wave Lett., Vol. 9, 96-99, 1999.
doi:10.1109/22.842020 Google Scholar
21. Toupikov, M. and G. Pan, "On nonlinear modeling of microwave devices using interpolating wavelets," IEEE Trans. Microwave Theory and Tech., Vol. 48, 500-509, 2000.
doi:10.1137/S1064827597316278 Google Scholar
22. Holmstron, M., "Solving hyperbolic PDE's using interpolating wavelets," SIAM J. Sci. Comp., Vol. 21, 405-420, 1999. Google Scholar
23. Ramesh, R., M. Madheswaran, and K. Kannan, "Optical effects on the characteristics of a nanoscale FinFET," Progress In Electromagentic Research B, Vol. 21, 235-255, 2010.
doi:10.1109/ICTEL.2010.5478870 Google Scholar
24. Moradi, H., M. Falahpour, H. H. Refai, P. G. LoPresti, and M. Atiquzzaman, "BER analysis of optical wireless signals through lognormal fading channels with perfect CSI," 17th International Conference on Telecommunications, 493-497, 2010.
doi:10.1109/TCOMM.2003.815052 Google Scholar
25. Zhu, X. and J. M. Kahn, "Performance bounds for coded free-space optical communications through atmospheric turbulence channels," IEEE Trans. on Communications, Vol. 51, No. 8, 1233-1239, 2003.
doi:10.1109/TCOMM.2002.800829 Google Scholar
26. Zhu, X. and J. M. Kahn, "Free-space optical communication through atmospheric turbulence channels," IEEE Trans. on Communications, Vol. 50, No. 8, 1293-1300, 2002.
doi:10.1109/TWC.2008.061002 Google Scholar
27. Letzepis, N., I. Holland, and W. Cowley, "The Gaussian free space optical MIMO channel with Q-ary pulse position modulation," IEEE Trans. on Wireless Communications, Vol. 7, No. 5, 1744-1753, 2008. Google Scholar