Vol. 37
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-01-06
Modeling the Interaction of Terahertz Pulse with Healthy Skin and Basal Cell Carcinoma Using the Unconditionally Stable Fundamental Adi-FDTD Method
By
Progress In Electromagnetics Research B, Vol. 37, 365-386, 2012
Abstract
This paper presents the application of unconditionally stable fundamental finite-difference time-domain (FADI-FDTD) method in modeling the interaction of terahertz pulse with healthy skin and basal cell carcinoma (BCC). The healthy skin and BCC are modeled as Debye dispersive media and the model is incorporated into the FADI-FDTD method. Numerical experiments on delineating the BCC margin from healthy skin are demonstrated using the FADI-FDTD method based on reflected terahertz pulse. Hence, the FADI-FDTD method provides further insight on the different response shown by healthy skin and BCC under terahertz pulse radiation. Such understanding of the interaction of terahert pulse radiation with biological tissue such as human skin is an important step towards the advancement of future terahertz technology on biomedical applications.
Citation
Ding Yu Heh, and Eng Leong Tan, "Modeling the Interaction of Terahertz Pulse with Healthy Skin and Basal Cell Carcinoma Using the Unconditionally Stable Fundamental Adi-FDTD Method," Progress In Electromagnetics Research B, Vol. 37, 365-386, 2012.
doi:10.2528/PIERB11090905
References

1. Han, P. Y., G. C. Cho, and X. C. Zhang, "Time-domain transillumination of biological tissues with terahertz pulses," Opt. Lett., Vol. 25, 242-244, 2000.

2. Smye, S. W., J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, "The interaction between terahertz radiation and biological tissue," Phys. Med. Biol., Vol. 46, 101-112, 2001.

3. Pickwell, E. and V. P. Wallace, "Biomedical applications of terahertz technology," J. Phys. D: Appl. Phys., Vol. 39, 301-310, 2006.

4. Son, J.-H., "Terahertz electromagnetic interactions with biological matter and their applications," J. Appl. Phys., Vol. 105, No. 102033, 2009.

5. Woodward, R. M., B. E. Cole, V. P. Wallace, D. D. Arnold, R. J. Pye, E. H. Linfield, M. Pepper, and A. G. Davies, "Terahertz pulse imaging of in vitro basal cell carcinoma samples," TOPS, Vol. 56, 329-330, 2001.

6. Woodward, R. M., B. E. Cole, V. P. Wallace, R. J. Pye, D. D. Arnold, E. H. Linfield, and M. Pepper, "Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue ," Phys. Med. Biol., Vol. 47, 3853-3863, 2002.

7. Pickwell, E., B. E. Cole, A. J. Fitzgerald, M. Pepper, and V. P.Wallace, "In vivo study of human skin using pulsed terahertz radiation ," Phys. Med. Biol., Vol. 49, 1595-1607, 2004.

8. Wallace, V. P., P. F. Taday, A. J. Fitzgerald, R. M. Woodward, J. Cluff, R. J. Pye, and D. D. Arnone, "Terahertz pulsed imaging and spectroscopy for biomedical and pharmaceutical applications," Faraday Discuss., Vol. 126, 255-263, 2004.

9. Wallace, V. P., A. J. Fitzgerald, S. Shankar, N. Flanagan, R. J. Pye, J. Cluff, and D. D. Arnone, "Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo," British J. Dermatol., Vol. 151, 424-432, 2004.

10. Wallace, V. P., A. J. Fitzgerald, E. Pickwell, R. J. Pye, P. F. Taday, N. Flanagan, and H. A. Thomas, "Terahertz pulsed spectroscopy of human basal cell carcinoma," Appl. Spectroscopy, Vol. 60, 1127-1133, 2006.

11. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media,", Vol. 14, No. 4, 302-307, Apr. 1966.

12. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, MA, 2005.

13. Pickwell, E., B. E. Cole, A. J. Fitzgerald, V. P. Wallace, and M. Pepper, "Simulation of terahertz pulse propagation in biological systems," Appl. Phys. Lett., Vol. 84, 2190-2192, 2004.

14. Pickwell, E., A. J. Fitzgerald, B. E. Cole, P. F. Taday, R. J. Pye, T. Ha, M. Pepper, and V. P. Wallace, "Simulating the response of terahertz radiation to basal cell carcinoma using ex vivo spectroscopy measurements," J. Biomed. Opt., Vol. 10, No. 064021, 2005.

15. Tan, E. L., "Fundamental schemes for efficient unconditionally stable implicit finite-difference time-domain methods,", Vol. 56, No. 1, 170-177, Jan. 2008.

16. Zheng, F., Z. Chen, and J. Zhang, "Toward the development of a three-dimensional unconditionally stable finite-difference time-domain method,", Vol. 48, No. 9, 1550-1558, Sep. 2000.

17. Namiki, T., "3-D ADI-FDTD method: Unconditionally stable time-domain algorithm for solving full vector Maxwell's equations,", Vol. 48, No. 9, 1743-1748, Oct. 2000.

18. Tan, E. L., "Concise current source implementation for efficient 3-D ADI-FDTD method ,", Vol. 17, No. 11, 748-750, Nov. 2007.

19. Sandby-Moller, J., T. Poulsen, and H. C. Wulf, "Epidermal thickness at different body sites: Relationship to age, gender, pigmentation, blood content, skin type and smoking habits," Acta Dermatol. Venereol., Vol. 83, 410-413, 2003.

20. Koehler, M. J., T. Vogel, P. Elsner, K. Konig, R. Buckle, and M. Kaatz, "In vivo measurement of the human epidermal thickness in different localizations by multiphoton laser tomography ," Skin Research and Technology, Vol. 16, 259-264, 2010.

21. Tay, W. C., D. Y. Heh, and E. L. Tan, "GPU-accelerated fundamental ADI-FDTD with complex frequency shifted convolutional perfectly matched layer ," Progress In Electromagnetics Research M, Vol. 14, 177-192, 2010.

22. Hale, G. M. and M. R. Querry, "Optical constants of water in the 200nm to 200um wavelength region," Appl. Opt., Vol. 12, 555-563, 1973.