Vol. 47
Latest Volume
All Volumes
PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2013-01-02
A Monte-Carlo Mpstd Analysis of Scattering from Cylinders Buried Below a Random Periodic Rough Surface
By
Progress In Electromagnetics Research B, Vol. 47, 179-202, 2013
Abstract
The analysis of scattering of objects buried below a random rough surface is of practical interest. In reality, the random rough surface may be of an extensive periodic structure. To deal with this more realistic situation, this paper presents a Monte-Carlo MPSTD numerical technique developed for investigating the scattering of a cylinder buried below a random periodic rough surface. The computation model is formulated in two steps. In the first step, only the random rough surface is considered and the periodic boundary condition (PBC) is enforced at the two ends of a period of the rough surface. Then, in the second step, a cylinder is placed below the random rough surface and the interaction between the buried cylinder and the rough surface is taken into account. In each of the two steps, the fields are computed employing the MPSTD algorithm developed in the authors' previous work. Sample numerical results are presented and validated.
Citation
Yueyang Dai, Wei Liu, and Xiao-Bang Xu, "A Monte-Carlo Mpstd Analysis of Scattering from Cylinders Buried Below a Random Periodic Rough Surface," Progress In Electromagnetics Research B, Vol. 47, 179-202, 2013.
doi:10.2528/PIERB12100105
References

1. Lawrence, D. E. and K. Sarabandi, "Electromagnetic scattering from a dielectric cylinder buried beneath a slightly rough surface," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 10, 1368-1376, Oct. 2002.
doi:10.1109/TAP.2002.802160

2. Johnson, J. T. and R. J. Burkholder, "Coupled canonical grid/discrete dipole approach for computing scattering from objects above or below a rough interface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 6, 1214-1220, Jun. 2001.
doi:10.1109/36.927443

3. Johnson, J. T. and R. J. Burkholder, "A study of scattering from an object below a rough surface," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 1, 59-66, Jan. 2004.
doi:10.1109/TGRS.2003.815670

4. El-Shenawee, M., "Scattering from multiple objects buried beneath two-dimensional random rough surface using the steepest decent fast multipole method ," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 4, 802-809, Apr. 2003.
doi:10.1109/TAP.2003.811096

5. El-Shenawee, M., "Polarimetric scattering from two-layered two-dimensional random rough surfaces with and without buried objects," IEEE Transactions on Geosciences and Remote Sensing, Vol. 42, No. 1, 67-76, Jan. 2004.
doi:10.1109/TGRS.2003.815675

6. El-Shenawee, M., C. Rappaport, E. Miller, and M. Silevitch, "3-D subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surface: Use of the steepest descent fast multipole method (SDFMM) ," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, 1174-1182, Jun. 2001.
doi:10.1109/36.927436

7. El-Shenawee, M., C. Rappaport, and M. Silevitch, "Monte Carlo simulations of electromagnetic scattering from random rough surface with 3-D penetrable buried objects: Mine detection application using the SDFMN," Journal of Optical Society America A, Dec. 2001.

8. Kuo, C. and M. Moghaddam, "Electromagnetic scattering from a buried cylinder in layered media with rough interfaces," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 8, 2392-2401, Aug. 2006.
doi:10.1109/TAP.2006.879208

9. Duan, X. and M. Moghaddam, "Vector electromagnetic scattering from layered rough surfaces with buried discrete random media for subsurface and root-zone soil moisture sensing," Proceedings of IEEE International Geosciences and Remote Sensing Symposium, 1227-1230, Jul. 2011.

10. Ozgun, O. and M. Kuzuoglu, "Monte Carlo-based characteristic basis finite-element method (MC-CBFEM) for numerical analysis of scattering from objects on/above rough sea surface ," IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No. 3, 769-783, Mar. 2012.
doi:10.1109/TGRS.2011.2162650

11. Kuang, L. and Y.-Q. Jin, "Bistatic scattering from a three-dimensional object over a randomly rough surface using the FDTD algorithm," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2302-2312, Aug. 2007.
doi:10.1109/TAP.2007.901846

12. Dridi, K. H., J. S. Hesthaven, and A. Ditkowski, "Staircase-free finite-difference time-domain formulation for general materials in complex geometries," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 5, 749-756, May 2001.
doi:10.1109/8.929629

13. Hastings, F. D., J. B. Schneider, and S. L. Broschat, "A finite-difference time-domain solution to scattering from a rough pressure-release surface," Journal of the Acoustical Society of America, Vol. 102, No. 6, 3394-3400, 1997.
doi:10.1121/1.419581

14. Yang, B., D. Gottlieb, and J. S. Hesthaven, "Spectral simulation of electromagnetic wave scattering," Journal of Computational Physics, Vol. 134, 216-230, 1997.
doi:10.1006/jcph.1997.5686

15. Yang, B. and J. S. Hesthaven, "A pseudospectral method for time-domain computation of electromagnetic scattering by bodies of revolution," IEEE Transactions on Antennas and Propagation, Vol. 47, No. 1, 132-141, Jan. 1999.
doi:10.1109/8.753003

16. Zhao, G. and Q. H. Liu, "The 2.5-D multidomain pseudospectral time-domain algorithm," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 3, 619-627, Mar. 2003.
doi:10.1109/TAP.2003.809852

17. Zhao, G. and Q. H. Liu, "The 3-D multidomain pseudospectral time-domain algorithm for inhomogeneous conductive media," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 3, 559-562, Jun. 22-27, 2003.

18. Shi, Y. and C.-H. Liang, "A strongly well-posed PML with unsplit-field formulations in cylindrical and spherical coordinates ," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1761-1776, 2005.
doi:10.1163/156939305775696784

19. Shi, Y. and C. -H. Liang, "Two dimensional multidomain pseudospectral time-domain algorithm based on alternating-direction implicit method ," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1207-1214, Apr. 2006.
doi:10.1109/TAP.2006.872591

20. Shi, Y. and C.-H. Liang, "Multidomain pseudospectral time domain algorithm using a symplectic integrator," IEEE Transactions IEEE Transactions, Vol. 55, No. 2, 433-439, Feb. 2007.
doi:10.1109/TAP.2006.889906

21. Shi, Y. and C.-H. Liang, "Characteristic variables patching conditions in multidomain pseudospectral time domain," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 353-356, 2007.
doi:10.1109/LAWP.2007.902031

22. Liu, Q. H., "The PSTD algorithm: A time-domain method requiring only two cells per wavelength," Microwave and Optical Technology Letters, Vol. 15, No. 3, 158-165, Jun. 20, 1997.
doi:10.1002/(SICI)1098-2760(19970620)15:3<158::AID-MOP11>3.0.CO;2-3

23. Fan, G. X., Q. H. Liu, and J. S. Hesthaven, "Multidomain pseudospectral time-domain simulations of scattering by objects buried in lossy media," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 6, 1366-1373, Jun. 2002.
doi:10.1109/TGRS.2002.800272

24. Taflove, A. and S. C. Hagness, Computational Electrodynamics The Finite-difference Time-domain Method, 3rd Ed., Chapter 17, Advances in PSTD Techniques, by Q. H. Liu and G. Zhao, Artech House, Inc., Norwood, MA, 2005 .

25. Liu, W., Y. Dai, H. Yang, and X.-B. Xu, "Scattering of object buried below random rough surface --- A Monte-Carlo pseudospectral time-domain approach," Electromagnetics, Vol. 32, No. 6, 330-344, Aug. 2012.
doi:10.1080/02726343.2012.701515

26. Tsang, L., J. A. Kong, K. H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves, (Volume II) Numerical Simulations, John Wiley & Sons Inc., New York, 2001.

27. Ye, H. and Y. Q. Jin, "Parameterization of the tapered incident wave for numerical simulation of electromagnetic scattering from rough surface," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 3, 1234-1237, Mar. 2005.
doi:10.1109/TAP.2004.842586

28. Chan, C. H., S. H. Lou, L. Tsang, and J. A. Kong, "Electromagnetic scattering of waves by random rough surface: A finite-difference time-domain approach," Microwave and Optical Technology Letters, Vol. 4, No. 9, 355-359, Aug. 1991.
doi:10.1002/mop.4650040907

29. Veysoglu, M. E., R. T. Shin, and J. A. Kong, "A finite-difference time-domain analysis of wave scattering from periodic surface: Oblique incidence case," Journal of Electromagnetic Waves and Applications, Vol. 7, No. 12, 1595-1607, 1993.
doi:10.1163/156939393X00020

30. Tsay, W. J. and D. M. Pozar, "Application of the FDTD technique to periodic problems in scattering and radiation," IEEE Microwave and Guided Wave Letters, Vol. 3, No. 8, 250-252, Aug. 1993.
doi:10.1109/75.242225

31. Yang, F., J. Chen, R. Qiang, and A. Elsherbeni, "FDTD analysis of periodic structures at arbitrary angles: A simple and efficient implementation of the periodic boundary conditions," Proceedings of IEEE Antennas and Propagation Society International Symposium, 2715-2718, 2006.
doi:10.1109/APS.2006.1711164

32. Wong, P. B., G. L. Tyler, J. E. Baron, E. M. Gurrola, and R. A. Simpson, "A three-wave FDTD approach to surface scattering with applications to remote sensing of geophysical surfaces," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 4, 504-514, Apr. 1996.
doi:10.1109/8.489302

33. Zhu, X. and L. Carin, "Multiresolution time-domain analysis of plane-wave scattering from general three-dimensional surface and subsurface dielectric targets ," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 11, 1568-1578, Nov. 2001.

34. Yi, Y., B. Chen, D.-G. Fang, and B.-H. Zhou, "A new 2-D FDTD method applied to scattering by infinite objects with oblique incidence," IEEE Transactions on Electromagnetic Compatibility, Vol. 47, No. 4, 756-762, Nov. 2005.
doi:10.1109/TEMC.2005.860559

35. Harrington, R. F., Time-Harmonic Electromagnetic Fields, IEEE Press, 2001.